• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ABERRATIONS OF UNOBSCURED REFLECTIVE OPTICAL SYSTEMS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8315303_sip1_m.pdf
    Size:
    3.008Mb
    Format:
    PDF
    Description:
    azu_td_8315303_sip1_m.pdf
    Download
    Author
    ROGERS, JOHN RICE.
    Issue Date
    1983
    Keywords
    Aberration.
    Optical instruments -- Design and construction.
    Imaging systems.
    Advisor
    Shannon, Robert R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The primary distinction between an ordinary optical system and one which is both unobscured and reflective is that the elements of the latter must be tilted or decentered with respect to one another. In general, this results in an optical system which has no axis of rotational symmetry, and therefore the classical aberration theory of symmetric systems is no longer applicable. Furthermore, the image becomes anamorphic and keystone distorted, due to the relative tilt between the object and the optical surfaces. The first part of this work is the development of a semi-analytic treatment of the properties (through third order) of systems possessing large tilts and decentrations. The Gaussian properties of both the image and pupil are described in terms of tilt, decentration, magnification, keystone distortion, and anamorphic distortion parameters. In computing these parameters, it is important to take into account the transferred components of the parameters, which are due to the Gaussian properties of the preceding surfaces. The third order properties are computed using the fact that each optical surface, together with its associated entrance pupil, form an optical subsystem which possesses an axis of approximate symmetry. About this axis, the aberration contributions of that surface may be described in the classical wave aberration expansion. The coefficients in this expansion may be corrected for the non-circular appearance of both the object and pupil, using the parametric description of their Gaussian form. the aberration fields due to the various surface contributions are then combined vectorally to yield the resultant aberration field in the image plane. The vector theory is applied to the analysis of several optical systems, and the accuracy of the theory verified by comparison with raytrace data. As a demonstration of the usefulness of the theory to an optical designer, a three mirror unobscured system was designed using a methodology derived from the theory. At each step, the design options are explained, and the probable results are discussed. The residual aberrations of the resulting system are studied, and the selection of another design starting point is discussed from the point of view of the theory.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.