• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Automatic complexity analysis of logic programs.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9328617_sip1_m.pdf
    Size:
    7.201Mb
    Format:
    PDF
    Description:
    azu_td_9328617_sip1_m.pdf
    Download
    Author
    Lin, Nai-Wei.
    Issue Date
    1993
    Keywords
    Logic programming.
    Functional programming (Computer science)
    Committee Chair
    Debray, Saumya K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation describes research toward automatic complexity analysis of logic programs and its applications. Automatic complexity analysis of programs concerns the inference of the amount of computational resources consumed during program execution, and has been studied primarily in the context of imperative and functional languages. This dissertation extends these techniques to logic programs so that they can handle nondeterminism, namely, the generation of multiple solutions via backtracking. We describe the design and implementation of a (semi)-automatic worst-case complexity analysis system for logic programs. This system can conduct the worst-case analysis for several complexity measures, such as argument size, number of solutions, and execution time. This dissertation also describes an application of such analyses, namely, a runtime mechanism for controlling task granularity in parallel logic programming systems. The performance of parallel systems often starts to degrade when the concurrent tasks in the systems become too fine-grained. Our approach to granularity control is based on time complexity information. With this information, we can compare the execution cost of a procedure with the average process creation overhead of the underlying system to determine at runtime if we should spawn a procedure call as a new concurrent task or just execute it sequentially. Through experimental measurements, we show that this mechanism can substantially improve the performance of parallel systems in many cases. This dissertation also presents several source-level program transformation techniques for optimizing the evaluation of logic programs containing finite-domain constraints. These techniques are based on number-of-solutions complexity information. The techniques include planning the evaluation order of subgoals, reducing the domain of variables, and planning the instantiation order of variable values. This application allows us to solve a problem by starting with a more declarative but less efficient program, and then automatically transforming it into a more efficient program. Through experimental measurements we show that these program transformation techniques can significantly improve the efficiency of the class of programs containing finite-domain constraints in most cases.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Computer Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.