An optimization method for the design of structures for maximum fundamental frequency.
Name:
azu_td_9333326_sip1_m.pdf
Size:
3.151Mb
Format:
PDF
Description:
azu_td_9333326_sip1_m.pdf
Author
Doyle, Keith Brian.Issue Date
1993Committee Chair
Richard, Ralph M.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
An optimization method to maximize the fundamental frequency of a structure is developed. The procedure uses the stresses due to the mechanical loading and the free-vibration mode shapes to determine design coefficients for the elements. Each element of the structure is assigned a design coefficient rated on a scale of zero to ten. The design coefficients are used to modify an initial design following an iterative procedure. This method of optimal structural design, referred to as the Maximum Stiffness Design (MSD), may be classified as an intuitive optimality criteria method. The MSD method is demonstrated by increasing the fundamental frequency of simple beam structures, truss structures, and complex structures. These examples include a support structure for a telescope, a support structure for a beam collapser, an airplane wing, and a truss railroad bridge. The MSD optimization method is compared to NASTRAN's Design Sensitivity Analysis to provide a benchmark comparison. It is shown that the MSD method compares well to NASTRAN's optimization method. Furthermore, the optimization technique is used to develop optimum contour shapes for single arch, double arch, and edge-supported mirrors.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Civil Engineering and Engineering MechanicsGraduate College