• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An optimization method for the design of structures for maximum fundamental frequency.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9333326_sip1_m.pdf
    Size:
    3.151Mb
    Format:
    PDF
    Description:
    azu_td_9333326_sip1_m.pdf
    Download
    Author
    Doyle, Keith Brian.
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Aerospace engineering.
    Civil engineering.
    Committee Chair
    Richard, Ralph M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An optimization method to maximize the fundamental frequency of a structure is developed. The procedure uses the stresses due to the mechanical loading and the free-vibration mode shapes to determine design coefficients for the elements. Each element of the structure is assigned a design coefficient rated on a scale of zero to ten. The design coefficients are used to modify an initial design following an iterative procedure. This method of optimal structural design, referred to as the Maximum Stiffness Design (MSD), may be classified as an intuitive optimality criteria method. The MSD method is demonstrated by increasing the fundamental frequency of simple beam structures, truss structures, and complex structures. These examples include a support structure for a telescope, a support structure for a beam collapser, an airplane wing, and a truss railroad bridge. The MSD optimization method is compared to NASTRAN's Design Sensitivity Analysis to provide a benchmark comparison. It is shown that the MSD method compares well to NASTRAN's optimization method. Furthermore, the optimization technique is used to develop optimum contour shapes for single arch, double arch, and edge-supported mirrors.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.