• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Magmatic intrusions and hydrothermal systems: Implications for the formation of Martian fluvial valleys.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9333330_sip1_m.pdf
    Size:
    4.305Mb
    Format:
    PDF
    Description:
    azu_td_9333330_sip1_m.pdf
    Download
    Author
    Gulick, Virginia Claire.
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Geology.
    Committee Chair
    Baker, Victor R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation investigates the possible role of hydrothermally driven groundwater outflow in the formation of fluvial valleys on Mars. Although these landforms have often been cited as evidence for a past wanner climate and denser atmosphere, recent theoretical modeling precludes such climatic conditions on early Mars when most fluvial valleys formed. Because fluvial valleys continued to form throughout Mars' geological history and the most earth-like stream valleys on Mars formed well after the decline of the early putative earth-like climate, it may be unnecessary to invoke drastically different climatic conditions for the formation of the earliest stream valleys. The morphology of most Martian fluvial valleys indicates formation by ground-water sapping which is consistent with a subsurface origin. Additionally, many Martian fluvial valleys formed on volcanoes, impact craters, near fractures, or adjacent to terrains interpreted as igneous intrusions; all are possible locales of vigorous, geologically long-lived hydrothermal circulation. Comparison of Martian valley morphology to similar features on Earth constrains valley genesis scenarios. Volumes of measured Martian fluvial valleys range from 10¹⁰ to 10¹³ m³. Based on terrestrial analogs, total water volumes required to erode these valleys range from -10¹⁰ to 10¹⁵ m³. The clustered distribution of Martian valleys within a given terrain type, the sapping dominated morphology, and the general lack of associated runoff valleys all indicate the importance of localized ground-water outflow in the formation of these fluvial systems. An analytic model of a conductively cooling cylindrical intrusion is coupled with the U.S. Geological Survey's numerical ground-water computer code SUTRA to evaluate the magnitude of ground-water outflow expected from magmatically-driven hydrothermal systems on Mars. Results indicate that magmatic intrusions of several 10² km³ or larger can provide sufficient ground-water outflow over periods (several 10⁵ years) required to form Martian fluvial Valleys. Therefore, a vastly different climate on early Mars may not be necessary to explain the formation of the observed Valleys. Martian hydrothermal systems would have also produced long-lived sources of near-surface water; these localized regions may have provided oases for any microbial life that may have evolved on the planet.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.