• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A statistical mechanical non-lattice coordination theory to describe the solution thermodynamics of polymer mixtures.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9408375_sip1_m.pdf
    Size:
    6.276Mb
    Format:
    PDF
    Description:
    azu_td_9408375_sip1_m.pdf
    Download
    Author
    Ochs, Leonard Ryder.
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Chemistry, Physical and theoretical.
    Chemical engineering.
    Committee Chair
    Cabezas, Heriberto, Jr.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A theoretical model has been developed to advance the study of the thermodynamics of highly concentrated binary polymer solutions. This statistical mechanical theory was developed to allow the modeling of the molar Gibbs and Helmholtz free energies of mixing as well as the standard derived functions, such as the solvent and solute activities, and the molar enthalpies and entropies of mixing. Three major results have been generated from this work: (1) The polymer/solvent interactions can be partitioned into a coordination term, which leads to a configurational entropy, and an interaction energy of mixing term, which leads to the standard enthalpy of mixing; (2) The temperature dependence of the enthalpy of mixing yields an interaction energy of mixing which incorporates an additional entropy of mixing which is present for all types of systems, even athermal mixtures; and (3) The theory enables the use of experimentally obtained enthalpies of mixing to be used directly in the prediction of solvent activities, and experimentally determined solvent activities to be used as a predictor of the enthalpies of mixing without differentiating the experimental data. The theory was tested on fifteen binary systems. These systems had a range of physical property characteristics, from mixtures which can be considered almost ideal, to highly non-ideal athermal polymer solutions, to aqueous polymer solutions. The studied systems were; benzene/cyclopentane, benzene/cyclohexane, benzene/biphenyl, benzene/diphenylmethane, benzene/1,2-diphenylethane, cyclohexane/bicyclohexyl, n-hexane/n-hexadecane, toluene/polystyrene, chloroform/polystyrene, methylethylketone/polystyrene, cyclohexane/polystyrene, benzene/polypropylene glycol, benzene/polyethylene glycol, water/glucose, and water/polyethylene glycol. Parameters for each of these systems and components are tabulated. The experimental solvent activity data are graphed with the regression lines, and the experimental enthalpy of mixing data are graphed with the curves predicted from the solvent activity parameters. The average relative error of fit for the regression of the solvent activity data up to a polymer volume fraction of about 0.85 is less than ±0.0035, while for the entire solvent activity data set it is ±0.025. The average relative error of fit for the molar enthalpy of mixing predictions (excluding the water/PEG data) is less than ±0.005.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.