• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Collimatorless coincidence imaging.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9408515_sip1_c.pdf
    Size:
    14.45Mb
    Format:
    PDF
    Download
    Author
    Saffer, Janet Susan Reddin.
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Optics.
    Radiology.
    Committee Chair
    Barrett, Harrison H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation explores a novel design for a surgical probe, a collimatorless coincidence imaging system designed to aid in tumor detection in nuclear medicine. Surgical probes can be maneuvered close to a suspected tumor site, thereby achieving higher resolution and sensitivity than external gamma cameras. However, conventional probes cannot distinguish between distant background variations and small tumors near the probe. Collimatorless coincidence imaging is a new method for suppressing the effects of variations in the background radiation. This decidedly unconventional imaging system images without a collimator or aperture of any kind. The probe design consists of a 10 x 10 array of collimatorless gamma-ray detectors connected by coincidence circuitry. The probe is used with a radionuclide that emits multiple photons per decay, such as ¹¹¹In. The coincidence circuitry triggers data collection only when two photons strike the detectors within a short time interval. Because the photons are emitted independently, the probability of coincident hits on two detectors is proportional to the product of the solid angles subtended by the two detectors. Therefore distant sources have a very low probability of contributing to the data, making them all but invisible to the probe. Data collection from such a system was simulated using a Monte Carlo routine that included absorption, the slight correlation between the directions of the emitted photons, and the presence of accidental coincidences. The data were reconstructed into object representations using the pseudoinverse obtained by singular value decomposition (SVD). The images showed a significant suppression of distant sources when compared to a probe equipped with a conventional parallel-hole collimator. We confirmed in the laboratory, using a point source of In-111 and two CdTe detectors connected by an AND gate, that the falloff in sensitivity was inversely proportional to the fourth power of the distance to the source and that the proportion of true to accidental coincidences followed the predicted relationship to the source activity. We conclude that collimatorless coincidence imaging is promising approach for tumor detection using surgical probes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.