• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Polymerization in two-dimensional assemblies of sorbyl-containing lipids.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9410692_sip1_m.pdf
    Size:
    9.041Mb
    Format:
    PDF
    Description:
    azu_td_9410692_sip1_m.pdf
    Download
    Author
    Lamparski, Henry Gennady.
    Issue Date
    1993
    Keywords
    Biochemistry.
    Chemistry, organic.
    Committee Chair
    O'Brien, David F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Mono- and bis-substituted phosphatidylcholines (PC) containing a polymerizable sorbyl ester group at the acyl chain terminus were synthesized. The thermotropic phase behavior, two-dimensional polymerizability, and polymerized assemblies stability were investigated. The thermotropic phase behavior of mono- and bis-sorbylPCs was examined by differential scanning calorimetry. Each SorbPC exhibited a single endotherm which occurred at temperatures below the main phase transition (T(m)) of the corresponding linear saturated PC. Variations in the chain length of bis-SorbPC resulted in a pronounced odd/even alternation of the T m. The interaction of the sn-2 chain sorbyl ester carbonyl with neighboring methylene chains appears to be predominantly intermolecularly or intramolecularly depending on whether the chain length is even or odd, respectively. Intermolecular orientation of the sorbyl ester carbonyl decreased the T(m) to a greater extent than intramolecular orientation. The magnitude of the odd/even effect diminished as the chain length increased and the van der Waals interchain interactions increased. Lipid bilayers composed of either mono- or bis-SorbPCs were thermally polymerized (60°C) to high conversion with the radical initiator AIBN. Transesterification of poly-(SorbPC), resulting in removal of the lipid headgroup, yielded a soluble polymer which was analyzed by size exclusion chromatography relative to PMMA standards. The relative number-average degree of polymerization (X(n)) varied from 50 to nearly 600, and was proportional to [I]⁻¹. The Xn was identical for both mono- and bis-substituted SorbPCs at constant [I]. These results suggest that at high conversion the chain termination of the growing polymer occurs by primary radical termination, rather than bimolecular chain termination. UV-photopolymerization of mono-Sorb PC yielded oligomers. The stability of poly-(SorbPC) vesicles to detergent dissolution was examined by quasielastic light scattering. Poly-vesicles consisting of linear polymers having a X(n) of 50 did not undergo lysis with detergent, whereas UV-polymerized vesicles with X(n) of 3-5 were lysed. Prolonged UV-irradiation of bis-SorbPC vesicles resulted in stabilization to detergent, a result of extensive crosslinking of the short polymer chains. UV-polymerized vesicles of mono- and bisSorbPC were only stabilized if the mole fraction of bis-SorbPC was ≥ 0.4.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.