• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The application of the jackknife in geostatistical resource estimation: Robust estimator and its measure of uncertainty.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9421754_sip1_m.pdf
    Size:
    3.106Mb
    Format:
    PDF
    Description:
    azu_td_9421754_sip1_m.pdf
    Download
    Author
    Adisoma, Gatut Suryoprapto
    Issue Date
    1993
    Keywords
    Kriging.
    Geology -- Statistical methods.
    Committee Chair
    Kim, Young C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The application of the jackknife in geostatistical resource estimation (in conjunction with kriging) is shown to yield two significant contributions. The first one is a robust new estimator, called jackknife kriging, which retains ordinary kriging's simplicity and global unbiasedness while at the same time reduces its local bias and oversmoothing tendency. The second contribution is the ability, through the jackknife standard deviation, to set a confidence limit for a reserve estimate of a general shape. Jackknifing the ordinary kriging estimate maximizes sample utilization, as well as information of sample spatial correlation. The jackknife kriging estimator handles the high grade smearing problem typical in ordinary kriging by assigning more weight to the closest sample(s). The result is a reduction in the local bias without sacrificing global unbiasedness. When data distribution is skewed, log transformation of the data prior to jackknifing is shown to improve the estimate by making the data behave better under jackknifing. The technique of block kriging short-cut, combined with jackknifing, are shown as an easy-to-use solution to the problem of grade estimation of a general three-dimensional digitized shape and the uncertainty associated with the estimate. The results are a single jackknife kriging estimate for the shape and its corresponding jackknife variance. This approach solves the problem of combining independent block estimation variances, and provides a simple way to set confidence levels for global estimates. Unlike the ordinary kriging variance, which is a measure of data configuration and is independent of data values, the jackknife kriging variance reflects the variability of the values being inferred, both on an individual block level and on the global level. Case studies involving two exhaustive (symmetric and highly skewed) data sets indicates the superiority of the jackknife kriging estimator over the original (ordinary kriging) estimator. Some instability of the log-transformed jackknife estimate is noted in the highly skewed situation, where the data do not generally behave well under standard jackknifing. A promising solution for future investigations seems to lie in the use of weighted jackknife formulation, which should better handle a wider spectrum of data distribution.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mining and Geological Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.