• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Carrier relaxation and collective phenomena in nonequilibrium semiconductor electron-hole plasmas.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9421763_sip1_m.pdf
    Size:
    2.867Mb
    Format:
    PDF
    Description:
    azu_td_9421763_sip1_m.pdf
    Download
    Author
    Scott, Donald Christopher.
    Issue Date
    1993
    Keywords
    Dissertations, Academic.
    Condensed matter.
    Committee Chair
    Koch, Stephan W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A quantitative analysis of carrier-carrier scattering for electron-hole semiconductor plasmas is presented. Material parameters appropriate for GaAs are used for all calculations. Calculations are performed using the Boltzmann equation for carrier-carrier scattering. Screening of the Coulomb potential is treated in the fully-dynamical random phase approximation. Results are shown for roomtemperature near-equilibrium and far-from-equilibrium plasmas. Also, the equilibrium zero momentum scattering rates are calculated as a function of temperature (T = 10K to T = 1000K) and density (n = 10¹⁵ cm⁻³ to n = 10¹⁹ cm⁻³). Ultrafast scattering rates (on the order of 10 fs) are found to result for a carrier distribution with vacant low-momentum states. These rates are shown to be associated with the undamping of the acoustic plasmon which influences the scattering through screening of the Coulomb potential. Further analysis of plasmon undamping is presented, showing the conditions necessary for undamping of the acoustic mode. Results from a separate set of calculations, showing the time-evolution of the Wigner distribution for a semiconductor quantum wire, are shown. These numerical calculations were performed using the collisionless quantum Boltzmann equation for the case of a lightly-damped plasmon and an unstable growing plasma mode. Comparison is made with results predicted by the linear theory (Lindhard). Results showing the effects of increasing the field strength beyond the linear regime are also presented.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.