• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Plant morphology and gas exchange in Hesperaloe: Influence on its adaptation for cultivation.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9424976_sip1_w.pdf
    Size:
    5.942Mb
    Format:
    PDF
    Download
    Author
    Ravetta, Damián Andres.
    Issue Date
    1994
    Keywords
    Dissertations, Academic.
    Plant physiology.
    Botany.
    Committee Chair
    McLaughlin, Steven P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The working hypothesis for this dissertation was that the contrasting plant architecture, and the distinct native environments of Hesperaloe funifera and H. nocturna should be reflected in differences in their eco-physiological responses, and that these, in turn, would determine these species' adaptability limits and productivity under cultivation. The objective of this dissertation project was to evaluate plant morphological characteristics and their effect on physiological processes, and how environmental factors interact with these processes in H. funifera and H. nocturna. Common to both Hesperaloe funifera and H. nocturna is the possession of constitutive crassulacean acid metabolism (CAM). The major implication of CAM is a prominent water use efficiency (WUE). Although instantaneous net CO₂ uptake rates of both Hesperaloe funifera and H. nocturna are low when compared with C₃ plants, integrated 24-hr net CO₂ uptake rates are within the lower range of C₃ species. Because there is a relatively large range of conditions in which photosynthesis occurs (i.e., both Hesperaloe species have a long growing season), net CO₂ uptake in Hesperaloe integrated throughout the year may reach or surpass that of C₃ crops. Daily integrated CO₂ uptake during late fall, winter and early spring were similar in Hesperaloe funifera and H. nocturna. A major peak in CO₂ uptake was found during the fall for H. funifera but not for H. nocturna. Also, no reduction in integrated CO₂ uptake was found in H. nocturna during the summer months, while H. funifera showed a considerable reduction in CO₂ uptake during this season. The increase in photosynthetic activity in H. nocturna coincided with the emergence of the inflorescence. Contrastingly, flowering did not appear to increase net CO₂ uptake in H. funifera. In this species a flush of new leaf production (increased sink demand) coincides with the observed increase in photosynthesis during the fall. The late fall peak of CO₂ uptake found in H. funifera could also be caused by a photoperiodic stimulation of CO₂ uptake. Significant differences in WUE between the two Hesperaloe species were found. These differences were, at least, partially explained by contrasting plant architecture and differences in leaf morphology.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Arid Lands Resource Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.