Surficial processes, channel change, and geological methods of flood-hazard assessment on fluvially dominated alluvial fans in Arizona.
Name:
azu_td_9424981_sip1_m.pdf
Size:
6.026Mb
Format:
PDF
Description:
azu_td_9424981_sip1_m.pdf
Author
Field, John Jacob.Issue Date
1994Keywords
Alluvial fans -- Arizona -- White Tank Mountains.Alluvial fans -- Arizona -- Tortolita Mountains.
Geomorphological mapping -- Arizona -- White Tank Mountains.
Geomorphological mapping -- Arizona -- Tortolita Mountains.
Flood control channels -- Arizona.
Flood forecasting -- Arizona.
Committee Chair
Baker, V. R.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
A combination of geological and hydraulic techniques represents the most sensible approach to flood hazard analysis on alluvial fans. Hydraulic models efficiently yield predictions of flood depths and velocities, but the assumptions on which the models are based do not lead to accurate portrayals of natural fan processes. Geomorphological mapping, facies, mapping, and hydraulic reconstructions of past floods provide data on the location, types, and magnitude of flood hazards, respectively. Geological reconstructions of past floods should be compared with the results of hydraulic modeling before, potentially unsound, floodplain management decisions are implemented. The controversial Federal Emergency Management Agency procedure for delineating flood-hazard zones underestimated the extent, velocity, and depth of flow during recent floods on two alluvial fans by over 100, 25, and 70 percent, respectively. Flow on the alluvial fans occurs in one or more discontinuous ephemeral stream systems characterized by alternating sheetflood zones and channelized reaches. The importance of sheetflooding is greater on fans closer to the mountain front and with unstable channel banks. Channel diversions on five alluvial fans repeatedly occurred along low channel banks and bends where the greatest amount of overland flow is generated. Channel migration occurs through stream capture whereby overland flow from the main channel accelerates and directs erosion of adjacent secondary channels. The recurrence interval of major channel shifts is greater than 100 years, but minor changes occurred on all five fans during this century. Small aggrading flows are important, because they decrease bank heights and alter the location of greatest overland flow during subsequent floods. The results of this study demonstrate that (1) geological reconstructions of past floods can check the results of hydraulic models, (2) the character of flooding on alluvial fans can vary significantly in the same tectonic and climatic setting due to differences in drainage-basin characteristics, and (3) flood-hazard assessments on alluvial fans must be updated after each flood, because the location and timing of channel diversions can be affected by small floods.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
GeosciencesGraduate College
Degree Grantor
University of ArizonaCollections
Related items
Showing items related by title, author, creator and subject.
-
Historic Landmark Pricing: Implications for Community DevelopmentBarkley, David L.; Rutherford, Gary (College of Agriculture, University of Arizona (Tucson, AZ), 1983-02)
-
The ethnobotany and phenology of plants in and adjacent to two riparian habitats in southeastern Arizona.Asdall, Willard Van; Adams, Karen Rogers.; Mason, Charles T.; Martin, Paul S.; Davis, Owen K.; Turner, Raymond M. (The University of Arizona., 1988)Two riparian habitats in southeastern Arizona provide the setting for a study of 127 plants useful to human foragers. A view of plant part availability is based on annual phenological profiles, and on historic and prehistoric records of plant use. Food choice is limited in March and April, but high August through November. Riparian plants also offer numerous non-food resources. Trees and shrubs serve more needs in relation to number of available species than do perennial herbs (including grasses) and annuals. Southwestern ethnographic literature hints that certain native taxa (Panicum, Physalis, Populus, Salix, Typha and Vitis) might receive special care. Inherent qualities of parts, coupled with ethnographic records of preparation and use, provide a basis for speculation on which parts might survive in an ancient record. Most are expected to disintegrate in open sites. Parts sought for different needs can enter a dwelling via diverse routes that produce confusingly similar archaeological debris. Modern experiments to wash pollen from 14 separate harvests permit evaluation of plant fruit and leaves as pollen traps, to help interpret pollen recovered from ancient dwellings. High amounts of Berberis, Rumex and Ribes pollen, sometimes in clumps or as tetrads, travel on harvested fruit. Arctostaphylos, Monarda, Oxalis, Rhus, Rhamnus, Vitis and Juniperus parts carry lower amounts. Quercus and Gramineae pollen grains travel on parts of other taxa, as well as on their own fruit. The phenological profiles offer insight into group life-form activities in response to local temperature and precipitation trends. Rising and maximum temperatures coincide with intense vegetative and reproductive activity for trees, shrubs, herbaceous perennials, and annuals. Increased levels of precipitation coincide with maximum flowering and fruiting of herbaceous perennials and fall annuals. Limited data on six taxa from Utah generally agrees with observations in this study, suggesting strong genetic control in the phenology of some riparian taxa.
-
A recursive programming analysis of water conservation in Arizona agriculture : a study of the Phoenix active management areaLierman, Wally Kent.; Wade, James C.; Ayer, Harry W.; Cory, Dennis (The University of Arizona., 1983)Arizona agriculture faces many changes in the near future. One of the most imminent changes will come from the enactment of the 1980 Arizona Groundwater Management Act. The 1980 AGWMA is designed ultimately to curtail the use of groundwater in Arizona. Agriculture will be affected since this sector used approximately 87 percent of all water in the State in 1980. This study reports on the possible effects that a proposed pump tax and water duty policy would have on agriculture within the Phoenix Active Management Area. The PAMA is one of four such areas in the State that have been identified as needing groundwater use management. The results of this study indicate that the proposed water duty is more effective in curbing groundwater use than the proposed pump tax. Investment in more water application efficient irrigation technologies is also important in this study. However, substantial amounts of capital investment funds will be needed to begin this investment.