• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    An exploration of stochastic decomposition algorithms for stochastic linear programs with recourse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426301_sip1_c.pdf
    Size:
    11.73Mb
    Format:
    PDF
    Download
    Author
    Lowe, Wing Wah.
    Issue Date
    1994
    Keywords
    Dissertations, Academic.
    Operations research.
    System theory.
    Committee Chair
    Higle, Julia L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Stochastic linear programs are linear programs in which some of the problem data are random variables. The particular kind of programs that we study belong to the recourse model. Under this model, some decisions are postponed until better information becomes available (e.g., an outcome of a random variable is realized), while other decisions must be made 'here and now.' For example, in a telecommunication network planning problem, decisions regarding the addition of network capacity have to be made before knowing customer demand (i.e., 'here and now'). Once the demand is realized, efficient usage of the network can then be determined. This work explores algorithms for the solution of such programs: stochastic linear programs with recourse. The algorithms investigated can be described as decomposition based cutting plane methods in which the cuts are estimated from random samples. Moreover, the algorithms all use the incremental sampling plan inherent to the Stochastic Decomposition (SD) algorithm developed by Higle and Sen in 1991. Our study includes both two stage and multistage programs. For the solution of two stage programs, we present the Conditional Stochastic Decomposition (CSD) algorithm, a multicut version of the SD algorithm. CSD is most suitable for situations in which data are difficult to obtain and may be computationally intense. Because of this potential intensity, we explore algorithms which require less computational effort than CSD. These algorithms combine features of both CSD and SD and are referred to as hybrid algorithms. Following our exploration of these algorithms for two stage problems, we next explore an extension of the SD algorithm that can be used for multistage problems with stagewise independent random variables. For the sake of notational brevity, our technical development is centered around the three stage case, although the extension to multistage problems is straightforward. Under mild conditions, convergence results similar to those found in the two stage algorithms hold. Multistage stochastic decomposition is currently a largely uncharted area. Our research represents the first major effort in this direction.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Systems and Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.