• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    APPLICATION OF THE THEORY OF REGIONALIZED VARIABLES TO EARTHQUAKE PARAMETRIC ESTIMATION AND SIMULATION (CALIFORNIA).

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8322638_sip1_w.pdf
    Size:
    16.77Mb
    Format:
    PDF
    Download
    Author
    CARR, JAMES RUSSELL.
    Issue Date
    1983
    Keywords
    Earthquakes -- Data processing.
    Earthquake prediction -- Data processing.
    Earthquakes -- Mathematical models.
    Earthquake prediction -- Mathematical models.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Historical accounts of earthquakes show a high degree of spatial variability and uncertainty associated with ground motion. For this reason, historical data are not often used as input for earthquake hazard assessment. Regionally, however, earthquake ground motion is related by the concept of attenuation. Seismic hazard assessment techniques usually rely on catalogues of earthquake epicenters together with empirical attenuation relationships to define the seismic hazard for a particular region. Such techniques, however, overlook local variations in ground motion associated with actual earthquakes. A technique for seismic hazard assessment that includes historical data using the theory of regionalized variables and linear estimation techniques best represents ground motion dichotomy. Modified Mercalli intensity observations for the period 1930 through 1971 were treated as regionalized variables to define the seismic hazard for a region of Southern California centered around San Fernando. Despite variations in construction quality and individual sensitivity to ground motion, intensity values associated with seventy percent of the earthquakes that occurred during this period, for which at least five intensity observations were recorded, were accurately treated as regionalized variables. A Gumbel analysis computed using spatially regular data sets developed from these intensity values precisely associated high hazard regions with active faults near San Fernando. Other earthquake ground motion data can also be treated, accurately, as regionalized variables. These data include peak instrument recordings of spectral acceleration, velocity, and displacement. Moreover, response to earthquake ground motion at discrete frequencies, as recorded by response spectra, is also regionalized. These data, therefore, are accurately estimated using kriging. Fundamentally, because earthquake ground motion is shown to be a regionalized variable, all aspects of regionalized variables theory are applicable for these data, including disjunctive kriging, conditional simulation, and co-kriging.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mining and Geological Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.