• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    P-glycoprotein: Expression and function in normal circulating leukocytes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426544_sip1_c.pdf
    Size:
    7.144Mb
    Format:
    PDF
    Download
    Author
    Klimecki, Walter Thomas.
    Issue Date
    1994
    Committee Chair
    Dalton, William
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    P-glycoprotein (P-gly) is a well characterized membrane protein, expressed in cancer cells, functioning as an efflux pump. This function confers drug-resistance. P-gly is also expressed in normal tissues such as the liver and kidney. In normal tissues P-gly has restricted expression. In the kidney P-gly is expressed in tubular brush border. This suggests a physiologic role for P-gly. A goal of this work was to determine whether P-gly, if present in leukocytes, followed the cell-type restriction seen in other P-gly positive normal tissues. Assays measuring P-gly included immunofluorescence, immunocytochemistry, and immunoblot analysis. Northern blot analysis and RT-PCR were used to measure mdr1 mRNA. P-gly function was assayed by measuring the verapamil-sensitive retention of rhodamine 123 (rh123). Immunofluorescent staining of leukocytes for lineage and P-gly revealed high levels of P-gly in CD56+ cells. CD8+ cells followed in staining, with CD4+ and CD19+ cells at intermediate levels, and CD14+ and CD15+ cells staining at background. RNA analysis by RT-PCR confirmed the immunofluorescence data, except for CD15+ cells, which demonstrated mdr1 mRNA similar to CD4+ cells. Function assays confirmed the immunofluorescence results, with efficient clearing of dye from CD56+ cells, followed by CD8+, CD4+, and CD19+ cells. CD14+ and CD15+ cells did not demonstrate P-gly function. Immunoblot analysis of membranes and immunocytochemical analysis of CD15+ cells demonstrated P-gly. The high level of functional P-gly observed in CD56+ cells prompted experiments to determine whether P-gly was involved in the CD56+ mediated cytolytic response. Using 4 inhibitors of P-gly mediated efflux, cyclosporine A, PSC 833, R-verapamil, and S-verapamil, NK cells were assayed for cytolytic function. Each compound demonstrated dose-response relationships in inhibiting NK-mediated cytolysis. Each compound also demonstrated a dose-response in inhibition of P-gly mediated efflux, although there was not an exact correlation between efflux inhibition and cytolysis inhibition. Nevertheless, the data in this study demonstrate a relatively high level of P-gly expression in CD56+ and CD8+ cells. In addition, the data support a role for P-gly in the cytolytic function of NK cells, although the point of P-gly involvement in the process of cytolysis remains to be defined.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.