• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A 50,000 year beryllium-10 record from Gulf of California sediments.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426545_sip1_m.pdf
    Size:
    6.276Mb
    Format:
    PDF
    Description:
    azu_td_9426545_sip1_m.pdf
    Download
    Author
    McHargue, Lanny Ray.
    Issue Date
    1994
    Committee Chair
    Damon, Paul
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The cosmogenic radionuclide ¹⁰Be from a marine sediment core was studied to help understand late Quaternary variations in the geomagnetic field and cosmic rays. The primary objective of this study was to see if the ¹⁰Be anomalies observed in polar ice cores could be observed in mid-latitude marine sediments. A partly-varved sediment core from the upper 50 meters of Leg 64 (DSDP) in the Gulf of California was determined to be ideal. A chronology of the core was determined by radiocarbon analysis, sedimentation rates, and oxygen-isotope stratigraphy. It was found that radiocarbon analysis of total carbon content was reliable only for the sediments younger than 16,000 B.P. Older sediments contain a modern ¹⁴C component added during diagenesis. Radiocarbon analysis of the Holocene sediments showed that the laminations in the sediments formed yearly. Thus, a reasonably reliable chronology for the lower sections of the core was determined from the relatively constant and high sedimentation rate. In addition, data from the authigenic fraction of the sediments were gathered for aluminum, iron, manganese, calcium, magnesium, and beryllium. From these data, the determination of the history of the waters of the Gulf of California was possible. Hydrothermal activity, glacial meltwater events, and the changing water masses in the Gulf of California possibly have left a record in the core studied. Analysis of the ¹⁰Be data along with the elemental data shows that the ¹⁰Be concentrations in the authigenic fraction of the sediments tracked the production rate of this isotope in the atmosphere. The ¹⁰Be concentrations at this site were little affected by diagenesis, hydrothermal activity, and terrigenous input. Most of the ¹⁰Be deposited at site 480 originated from the open sea. The changing geomagnetic dipole moment for the Holocene is seen in the ¹⁰Be data. The production rate for ¹⁰Be during the late Pleistocene tracked the changing dipole moment of the Earth as shown in other studies. Two ¹⁰Be anomalies correspond with the Mono Lake and Laschamp geomagnetic excursions. It was determined that the geomagnetic excursions could not have produced these anomalies. The data for the ¹⁰Be anomalies are consistent with a previous hypothesis for supernovae shock waves and the generation of cosmic rays. It is proposed that a series of such shock waves compress the heliosphere and affect the magnetosphere of the Earth. For such a mechanism to produce the observed geomagnetic excursions, either an enhanced interplanetary magnetic field must be externally imposed on the magnetosphere, or external forcing creates a corresponding non-linear response from the magnetodynamo of the Earth.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.