• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Surface-atmosphere coupling on Triton and Pluto.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426549_sip1_m.pdf
    Size:
    5.805Mb
    Format:
    PDF
    Description:
    azu_td_9426549_sip1_m.pdf
    Download
    Author
    Stansberry, John Arthur.
    Issue Date
    1994
    Committee Chair
    Lunine, Jonathan I.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Sublimation of volatile ices and convection play important roles in determining the present and past climates of Neptune's large moon, Triton, and Pluto. I have developed models of these two processes and used the distribution of albedo on the surfaces of these two bodies to study surface temperatures, distribution of volatile ices, and lower atmospheric structure. My initial studies focused on Triton, which was encountered by Voyager 2 in 1989. One of the surprising results is that Triton's South Polar Cap is considerably larger than predicted by my model. Another basic result is that the volatile N₂ ice on Triton's surface has a low thermal emissivity (≃ 0.7) relative to canonical emissivity values, which are near unity. Some ambiguity in the thermal structure of Triton's atmosphere resulted from the encounter. By modeling the convective transport of heat between the surface and atmosphere I was able to show that the near-surface atmospheric temperature was close to the low end of the ra previous analyses of the occultation of a star by Pluto in 1988 may have erroneously concluded that Pluto's radius is approximately 1200 km. My results, while not ruling out that conclusion, show that Pluto could be much smaller than 1200 km and the atmosphere could still have produced the observed occultation lightcurve. A smaller surface radius, combined with the occultation lightcurve, implies that Pluto possesses a troposphere, which has never been considered before. The remaining piece of the Pluto atmosphere puzzle is the somewhat anomalous atmospheric composition required to explain the temperature structure derived from the occultation results. By expanding my earlier Triton work on the distribution N₂ ice to include the physics of simultaneous sublimation of N₂ and CH₄, I have been able to show that the required "anomalous" atmospheric composition is totally reasonable. Synthesizing these results with other recent work, I propose a new and testable paradigm for Pluto's atmosphere.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.