• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Positive definite matrix-valued functions and matrix variogram modeling.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426555_sip1_m.pdf
    Size:
    3.672Mb
    Format:
    PDF
    Description:
    azu_td_9426555_sip1_m.pdf
    Download
    Author
    Xie, Tailiang.
    Issue Date
    1994
    Committee Chair
    Myers, Donald
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In many applications in the physical and earth sciences there are multiple variables of interest which are correlated. In these cases, the spatial random function becomes vector-valued, in which spatial correlation and component (inter-variable) correlation come out simultaneously. We denote by Z(x) = (z₁(x), …, z(m)(x)ᵀ the vector-valued random function. Similarly the covariance and variogram structure of Z(x) play a central role in any prediction scheme. But the covariance function and variogram of Z(x) are no longer scalar functions. They are matrix-valued functions when m > 1 and have a positive (negative) definiteness property in a generalized sense. Any prediction technique for vector-valued spatial functions relies heavily on this property. Therefore, characterizing and modeling the matrix-valued covariance or variogram structure of Z(x) is extremely important in spatial statistics and become more difficult than in scalar cases. For instance, (a) there is a lack of standard models for the covariance function and variogram (23); (b) there is no efficient graphic aid for fitting models since the covariance function and variogram are matrix-valued functions; (c) there are many parameters need to be estimated. Even the basic analytic properties of matrix-valued positive definite functions are not clear. In this dissertation, we generalize the concept of (scalar) positive definite functions to matrix-valued functions which are related to correlations and variograms of vector-valued random functions, to analytically study matrix-valued (conditionally) positive definite functions beyond basic definitions, to create matrix-valued variogram models, to provide techniques for systematic variogram modeling.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.