• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cavity QED: Adiabatic atomic cooling in cavities and evaluation of a technique for atomic homodyne detection of cotangent states.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426557_sip1_m.pdf
    Size:
    3.359Mb
    Format:
    PDF
    Description:
    azu_td_9426557_sip1_m.pdf
    Download
    Author
    Zaugg, Thomas Collett.
    Issue Date
    1994
    Committee Chair
    Meystre, Pierre
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Part I. We analyze how a decaying cavity field can lead to significant atomic cooling. This cooling can be intuitively understood by invoking the adiabatic theorem to characterize the dynamics of an atom dressed by a classical field. We find numerically that cooling can proceed well into the quantum regime where there are only a few photons left in the cavity, and where the adiabatic theorem ceases to be applicable. A physical interpretation of this final cooling stage is given. Part II. We evaluate a nonlinear atomic homodyne detection scheme for measuring the Wigner characteristic function of a microwave cavity field. We find numerically that the semiclassical approximation, on which this scheme is based, does not give results consistent with a full quantum calculation. We analyze the back-action of the measurements on steady-state 'macroscopic superpositions' that can be generated in high-Q microwave cavities. We show that the measurements required for a full characterization of the state destroys the macroscopic superposition such that it cannot be reconstructed by using the scheme that was used to generate it in the first place.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.