• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization and modeling of high speed, high resolution focal plane arrays.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426565_sip1_c.pdf
    Size:
    24.47Mb
    Format:
    PDF
    Download
    Author
    Graeve, Thorsten.
    Issue Date
    1994
    Committee Chair
    Dereniak, Eustace L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The work presented in this dissertation examines the characterization and modeling of visible charge-coupled devices (CCDs). A theoretical model is discussed that represents the parallel clock register of a CCD as a lumped system of discrete resistances and capacitances. This model can be used to simulate the electrical performance of the clock register. From the simulation results the clock pulse degradation in the lossy transmission line model of the clock electrode can be determined. An upper limit is found to the parallel clock frequency at which reasonable pulse shapes are preserved. In addition, the model is used to find the current flow and the power dissipation within the clock electrodes. Through simulations, the total power dissipation on a high-speed, high-resolution CCD can be calculated and compared to theoretical values obtained from a conventional model. The experimental part of this dissertation covers the theory and application of test methodology for the characterization of high-speed, high-resolution CCDs. Both standard and novel techniques for CCD evaluation are discussed, covering all standard figures-of-merit such as read noise, full-well capacity, dynamic range, conversion gain, charge transfer efficiency, MTF, quantum efficiency, non-uniformity, dark current, linearity and lag. This chapter is followed by a discussion of the test camera hardware and software that is used to develop characterization techniques and apply them to specific devices. Finally, the characterization results from applying these techniques to the English Electric Valve (EEV) CCD13 are presented. This device is a 512 by 512 pixel, 8-output, three-phase, full-frame CCD that was designed for readout periods of less than 2 ms. It has been characterized at data rates up to 1 MHz, resulting in video acquisition of 128 by 64 pixel subarrays at 100 frames per second. The results show that both experimental characterization and theoretical modeling are two important aspects of CCD evaluation, providing necessary data to customers and valuable feedback to manufacturers.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.