• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A scattering parameter based method for the transient analysis of lossy, coupled, nonlinearly terminated transmission line systems in high-speed microelectronic circuits.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9426581_sip1_w.pdf
    Size:
    5.445Mb
    Format:
    PDF
    Download
    Author
    Vakanas, Loizos Petrou.
    Issue Date
    1994
    Committee Chair
    Palusinski, Olgierd A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The problem of accurate and efficient calculation of transient signal waveforms microelectronic circuits consisting of arbitrarily connected systems of multiple, coupled transmission lines and nonlinear devices such as transistors and diodes has been considered. Both non-dispersive and dispersive transmission lines can be handled. For the dispersive case, the dispersion is due to geometric or material nonuniformity as well as dielectric and conductor losses which may also exhibit frequency dependence. A general approach has been formulated which enables the simulation of arbitrarily connected linear networks, described in the frequency domain in terms their scattering parameters, and nonlinear networks with models described in the time domain. The inverse fast Fourier transform is used to obtain the impulse response for the frequency-dependent networks, and subsequently combined with the nonlinear models using convolution techniques to carry out the simulation in the time domain in a time-marching fashion. A technique has been developed that enables the reduction of large linear networks described in terms of scattering parameters into a smaller, compact description. This makes repeated simulations very economical in terms of computational time. In addition, the above procedure enables the simulation of transmission line systems with varying cross-section. The scattering parameters for the linear elements can be derived from a TEM or quasi-TEM field approximation for dominant TEM structures, a full-wave analysis for highly dispersive structures and discontinuities, or from measurements performed on the actual structures. A Fortran program has been developed that can simulate arbitrarily connected lossless or lossy transmission line systems and standard SPICE2G.6 devices (such as bipolar, MOS, junction field effect transistors etc.) Several applications of the program showed that losses and nonuniformities in the cross-sectional dimensions of the transmission lines may add significantly to the degradation of the signals propagated. Therefore, the simulator developed here is an indispensible tool for the analysis of such circuits.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.