LARGE MOMENTUM TRANSFER KAON-PROTON ELASTIC SCATTERING AT BEAM MOMENTA OF 100 GEV/C AND 200 GEV/C.
Author
KRUEGER, KEITH WILLIAM.Issue Date
1983Keywords
Cross sections (Nuclear physics)Kaons -- Scattering.
Pions -- Scattering.
Particles (Nuclear physics)
Protons -- Scattering.
Scattering (Physics)
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Measurements of the differential cross-section for elastic scattering of positive and negative kaons off of a proton target are given in this dissertation. The beam momenta were 100 GeV/c and 200 GeV/c. The range of t, the four momentum transfer squared, measured was 0.4 < -t < 3.0. The experiment was performed at Fermilab. The data is consistent with previous experiments. Because of the much greater statistical accuracy of this experiment, it is now clear that the apparent equality of the pion and kaon cross-sections at larger t was due to poor statistical accuracy. The experimental results are not predicted by any theory. Furthermore, the difference between the pion and kaon differential cross-sections is not explained by geometrical scaling, as it was in the past.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
PhysicsGraduate College
Degree Grantor
University of ArizonaCollections
Related items
Showing items related by title, author, creator and subject.
-
RESONANCE AND ASYMPTOTIC SERIES BASED IDENTIFICATION OF AN ACOUSTICALLY RIGID SPHERE (SINGULARITY EXPANSION METHOD).Dudley, Donald G.; WEYKER, ROBERT RICHARD.; Williams, Jeffery T.; Pao, Hsueh-yaun; West, Karen F. (The University of Arizona., 1986)Identification of the resonances and the local determination of the radius of curvature of an acoustically rigid sphere from simulated transient input-output data is presented. The scattering from the sphere is formulated using three techniques: the classic Mie-Lorenz series, the singularity expansion method (SEM), and the asymptotic series approximation. The Mie-Lorenz series is used to provide synthetic data. The SEM and the asymptotic series are used to develop two parametric inverse models. The scattered velocity potential is separated into three components: the reflection, the first creeping wave, and the second creeping wave. The effect of removing various components of the scattered potential on the resonance identification is shown, along with the effect of adding small amounts of noise. We find that the identification of a few resonances requires a relatively high order autoregressive, moving-average model. In addition, we show that removing the reflection from the synthetic output has only a small effect on the single or multiple output identified resonances. However, we find that changing the time origin, removing the second creeping wave, or adding small amounts of noise results in large errors in the identified resonances. We find that the radius of curvature can be accurately determined from synthetic data using the asymptotic series based identification. In addition, the identification is robust in the presence of noise, and requires only a low order asymptotic series model.
-
A new method for the detection and correction of errors due to interior resonance for the problem of scattering from cylinders of arbitrary cross-sectionSeidel, David B. (The University of Arizona., 1974)
-
Light scattering properties of solid aerosol particles of NaCl and (NHb4s)b2sSOb4sPerry, Roger Jon, 1950- (The University of Arizona., 1977)