Measurement of adhesion force due to condensed water vapor in a crossed-fiber system.
Name:
azu_td_9506978_sip1_m.pdf
Size:
4.921Mb
Format:
PDF
Description:
azu_td_9506978_sip1_m.pdf
Author
Wentzel, Thomas Martin.Issue Date
1994Committee Chair
Bickel, William S.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Little agreement exists in the scientific literature concerning the adhesion force between "small" particles, ranging in size from molecular clusters to 100 microns in diameter. Measured adhesion forces are affected by the very process by which particles come into contact, the environmental history of their time in contact, and the method of their removal. We built two instruments to perform repeated identical adhesion measurements between crossed quartz fiber pairs in a controlled environment. We find that multiple discrete values of adhesion force can occur for identical pull-off conditions and that the force as a function of relative humidity can be double-valued depending on whether relative humidity is increasing or decreasing. Our work shows that atmospheric water vapor greatly influences the adhesion force, both by condensing to form a liquid meniscus in the contact region between the particles, and by being adsorbed onto the quartz surfaces. Our adhesion force measurements are compared to predictions of adhesion force based on surface deformation theory and exact meniscus theory. In addition, our measured thickness of an adsorbed layer of water on a 0.6520 micron radius quartz fiber, using light-scattering techniques, differs from the adsorbed water layer thickness on a planar surface.Type
textDissertation-Reproduction (electronic)
Degree Name
Ph.D.Degree Level
doctoralDegree Program
PhysicsGraduate College