• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Solution of the advective-dispersive groundwater mass transport equation using Fourier transforms and the finite analytical method.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9506993_sip1_m.pdf
    Size:
    2.933Mb
    Format:
    PDF
    Description:
    azu_td_9506993_sip1_m.pdf
    Download
    Author
    Kaboudanian-Ardestani, Mojtaba.
    Issue Date
    1994
    Committee Chair
    Contractor, Dinshaw N.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    !The advective-dispersive equation is used extensively in studying and analyzing the transport of contaminants through groundwater systems. In this dissertation, the development and evaluation of a new numerical scheme for an efficient solution of groundwater solute transport problems is presented. The scheme, which is named the Finite Analytical/Fourier Transform Method (FAFM) is based on taking the Fourier transform of the transient equation in the physical domain. The transformed equation resembles a steady-state advective-dispersive equation with a first-order decay term. The FAFM approach for solving the advective-dispersive problem consists of decomposing the spatial domain into a number of fine homogeneous finite elements within each of which a local analytical solution to the solute transport equation can be obtained. The Finite Analytical method uses the local analytical solution to form a set of algebraic equations for the concentration in the frequency domain. Initial conditions in the time and frequency domains must match one another. If they do not, adjustments in the boundary conditions in the time domain for t < 0 have to be made. Time-domain solutions are then recovered from the frequency domain by using an efficient inverse Fourier transform algorithm. The results obtained indicate that the FAFM performs well over a very wide range of Peclet numbers. A comparison with the exact solutions for a number of simple cases reveals the accuracy of the FAFM technique. It is expected that the method will provide good solutions for the problems in which such exact analytical solutions do not exist.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.