• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cokriging, kernels, and the SVD: Toward better geostatistical analysis.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9507021_sip1_m.pdf
    Size:
    6.898Mb
    Format:
    PDF
    Description:
    azu_td_9507021_sip1_m.pdf
    Download
    Author
    Long, Andrew Edmund.
    Issue Date
    1994
    Keywords
    Geology -- Statistical methods.
    Kriging.
    Kernel functions.
    Committee Chair
    Myers, Donald E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Three forms of multivariate analysis, one very classical and the other two relatively new and little-known, are showcased and enhanced: the first is the Singular Value Decomposition (SVD), which is at the heart of many statistical, and now geostatistical, techniques; the second is the method of Variogram Analysis, which is one way of investigating spatial correlation in one or several variables; and the third is the process of interpolation known as cokriging, a method for optimizing the estimation of multivariate data based on the information provided through variogram analysis. The SVD is described in detail, and it is shown that the SVD can be generalized from its familiar matrix (two-dimensional) case to three, and possibly n, dimensions. This generalization we call the "Tensor SVD" (or TSVD), and we demonstrate useful applications in the field of geostatistics (and indicate ways in which it will be useful in other areas). Applications of the SVD to the tools of geostatistics are described: in particular, applications dependent on the TSVD, including variogram modelling in coregionalization. Variogram analysis in general is explored, and we propose broader use of an old tool (which we call the "corhogram ", based on the variogram) which proves useful in helping one choose variables for multivariate interpolation. The reasoning behind kriging and cokriging is discussed, and a better algorithm for solving the cokriging equations is developed, which results in simultaneous kriging estimates for comparison with those obtained from cokriging. Links from kriging systems to kernel systems are made; discovering kerneIs equivalent to kriging systems will be useful in the case where data are plentiful. Finally, some results of the application of geostatistical techniques to a data set concerning nitrate pollution in the West Salt River Valley of Arizona are described.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.