• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Heterogeneity in engineering materials: Cases of discrete and statistical disorder.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9517547_sip1_m.pdf
    Size:
    4.215Mb
    Format:
    PDF
    Description:
    azu_td_9517547_sip1_m.pdf
    Download
    Author
    Meisner, Mark Joseph.
    Issue Date
    1994
    Committee Chair
    Frantziskonis, George
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This paper presents analytical and numerical models for simulation of elastic and fracture properties of heterogeneous materials such as fiber composite and concrete. When the nonhomogeneous material is idealized as an elasticity problem it is possible to analyze and solve it by Papkovich-Neuber displacement potentials. The paper examines the elastic fields generated by two elliptic and three circular inclusions. The inhomogeneities undergo either eigenstrain expansion or mechanical loading on the matrix in which they are imbedded. Perfectly bonded and slipping interfaces are compared and expressed in infinite series. The results are illustrated by two specific geometries. When the heterogeneous material is composed of not only inclusions but also random voids, microcracks, material gradients, etc., the analytic classical elasticity approach is inconvenient. Hence, simulation is performed using a linear elastic-brittle framework. It is then possible to numerically study the elastic, and more importantly, the fracture characteristics of the solid. Possible fractal dimensions representing roughness are found for correlated Gaussian random materials under various loading conditions. Multifractal properties of the crack dissipation energy are illustrated by the f(α) spectrum. Finally, the correlation between the multifractal properties and the p model is demonstrated.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.