Show simple item record

dc.contributor.authorMeisner, Mark Joseph.
dc.creatorMeisner, Mark Joseph.en_US
dc.date.accessioned2011-10-31T18:24:10Z
dc.date.available2011-10-31T18:24:10Z
dc.date.issued1994en_US
dc.identifier.urihttp://hdl.handle.net/10150/186933
dc.description.abstractThis paper presents analytical and numerical models for simulation of elastic and fracture properties of heterogeneous materials such as fiber composite and concrete. When the nonhomogeneous material is idealized as an elasticity problem it is possible to analyze and solve it by Papkovich-Neuber displacement potentials. The paper examines the elastic fields generated by two elliptic and three circular inclusions. The inhomogeneities undergo either eigenstrain expansion or mechanical loading on the matrix in which they are imbedded. Perfectly bonded and slipping interfaces are compared and expressed in infinite series. The results are illustrated by two specific geometries. When the heterogeneous material is composed of not only inclusions but also random voids, microcracks, material gradients, etc., the analytic classical elasticity approach is inconvenient. Hence, simulation is performed using a linear elastic-brittle framework. It is then possible to numerically study the elastic, and more importantly, the fracture characteristics of the solid. Possible fractal dimensions representing roughness are found for correlated Gaussian random materials under various loading conditions. Multifractal properties of the crack dissipation energy are illustrated by the f(α) spectrum. Finally, the correlation between the multifractal properties and the p model is demonstrated.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.titleHeterogeneity in engineering materials: Cases of discrete and statistical disorder.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.contributor.chairFrantziskonis, Georgeen_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberKouris, Demitrisen_US
dc.contributor.committeememberJenkins, Edgar W.en_US
dc.contributor.committeememberKrajcinovic, Dusanen_US
dc.contributor.committeememberKundu, Tribikramen_US
dc.identifier.proquest9517547en_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file November 2023.
refterms.dateFOA2018-07-11T08:12:03Z
html.description.abstractThis paper presents analytical and numerical models for simulation of elastic and fracture properties of heterogeneous materials such as fiber composite and concrete. When the nonhomogeneous material is idealized as an elasticity problem it is possible to analyze and solve it by Papkovich-Neuber displacement potentials. The paper examines the elastic fields generated by two elliptic and three circular inclusions. The inhomogeneities undergo either eigenstrain expansion or mechanical loading on the matrix in which they are imbedded. Perfectly bonded and slipping interfaces are compared and expressed in infinite series. The results are illustrated by two specific geometries. When the heterogeneous material is composed of not only inclusions but also random voids, microcracks, material gradients, etc., the analytic classical elasticity approach is inconvenient. Hence, simulation is performed using a linear elastic-brittle framework. It is then possible to numerically study the elastic, and more importantly, the fracture characteristics of the solid. Possible fractal dimensions representing roughness are found for correlated Gaussian random materials under various loading conditions. Multifractal properties of the crack dissipation energy are illustrated by the f(α) spectrum. Finally, the correlation between the multifractal properties and the p model is demonstrated.


Files in this item

Thumbnail
Name:
azu_td_9517547_sip1_c.pdf
Size:
4.558Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record