• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Patterns, fishing and nonlinear optics.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9517582_sip1_m.pdf
    Size:
    5.626Mb
    Format:
    PDF
    Description:
    azu_td_9517582_sip1_m.pdf
    Download
    Author
    Geddes, John Bruce.
    Issue Date
    1994
    Committee Chair
    Moloney, Jerome
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Motivated by a conversation with my brother, a deep sea fisherman off the east coast of Scotland, I review the concepts which unify the topic of pattern formation in nonequilibrium systems. As a specific example of a pattern-forming system, I go on to examine pattern formation in nonlinear optics and I discuss two nonlinear optical systems in considerable detail. The first, counterpropagating laser beams in a nonlinear Kerr medium, results in the prediction and numerical observation of hexagonal patterns in a self-focusing medium, and of square patterns in a self-defocusing medium. Furthermore, a novel Hopf bifurcation is observed which destabilises the hexagons and an explanation in terms of a coupled-amplitude model is given. The other system, namely the mean-field model of propagation in a nonlinear cavity, also gives rise to hexagonal patterns in a self-focusing medium. By extending this model to include the vector nature of the electric field, polarisation patterns are predicted and observed for a self-defocusing medium. Roll patterns dominate close to threshold, while farther from threshold labyrinthine patterns are found. By driving the system very hard, a transition to a regime consisting of polarisation domains connected by fronts is also observed. Finally, numerical algorithms appropriate for solving the model equations are discussed and an alternative algorithm is presented which may be of use in pattern-forming systems in general.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.