• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cell-matrix interactions of microvessel endothelial cells in response to basic fibroblast growth factor.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9527963_sip1_m.pdf
    Size:
    5.808Mb
    Format:
    PDF
    Description:
    azu_td_9527963_sip1_m.pdf
    Download
    Author
    Hoying, James B.
    Issue Date
    1994
    Committee Chair
    Williams, Stuart
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Vertebrate tissues consist of parenchyma and vascular elements all of which are necessary for the specific form and function of these tissues. In a unique process termed angiogenesis, vessels invade forming tissues to provide for proper tissue perfusion. Much is known about the molecular and cellular elements of angiogenesis, however, it is not clear how these elements are coordinated to produce specific microvascular beds. In an effort to answer this question, the effects of basic fibroblast growth factor (bFGF) on human microvessel endothelial cell (HMVEC) interactions with collagen I were examined. HMVEC migration on collagen I was chosen as the model angiogenic response. Utilizing two distinct migration assays, bFGF either induced migration or had no effect. Examination of HMVEC adhesion with two separate assays revealed that HMVEC adhesion to collagen I was altered by bFGF treatment and depended on the density of HMVEC at the time of treatment. Adhesion of HMVEC with or without bFGF treatment was mediated entirely by β1 integrins as demonstrated with a blocking antibody studies. Experiments were performed to determine the mechanism by which bFGF can alter HMVEC adhesion and focused on low density HMVEC. The reduction in adhesion of low density HMVEC following bFGF treatment correlated with no change in β1 integrin surface expression, delayed cell spreading, altered organization of β1 integrin into substrate contacts, and serine/threonine phosphorylation of the β1 subunit. To evaluate the coordinated effects of bFGF on angiogenesis, an in vitro model simulating a microvascular environment was developed utilizing isolated microvessel fragments from rat adipose tissue cultured in three dimensional collagen I gels. The addition of crude basic fibroblast growth factor to the cultures resulted in the growth of significantly longer microvessels and the expression of an endothelial cell protein, von Willebrand factor. Based on this work, it is apparent that cellular responses to physiological signals during angiogenesis are multifactorial and are sensitive to many coincidental environmental factors such as cell density. The influence of these environmental factors is such as to substantially alter the effects of a signalling factor acting alone.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physiological Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.