Show simple item record

dc.contributor.advisorBrendel, Klausen_US
dc.contributor.authorVICKERS, ALISON ELIZABETH MARY.
dc.creatorVICKERS, ALISON ELIZABETH MARY.en_US
dc.date.accessioned2011-10-31T18:27:39Z
dc.date.available2011-10-31T18:27:39Z
dc.date.issued1983en_US
dc.identifier.urihttp://hdl.handle.net/10150/187047
dc.description.abstractThe metabolism and distribution of three commonly occurring PCB congeners, 4,4'-dichlorobiphenyl (4-DCB), 2,2',3,3',6,6'-hexachlorobiphenyl (236-HCB) and 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB), each displaying different structural features, were investigated at their principal metabolic site, the hepatocyte. Hepatocytes, isolated from male Sprague-Dawley rats (200-250 g) by collagenase perfusion, were suspended in medium 199 and maintained at 37°C in a gyratory shaker. The radiolabeled ¹⁴C-PCB congeners were added to the hepatocyte suspensions as a DMSO-albumin mixture. Each congener was rapidly taken up by the cells with less than 10% of the congener remaining in the medium. The congeners accumulated within the hepatocytes without being fully metabolized. Metabolism followed first order Michaelis-Menten kinetics for 20 min and plateaued by 90 min at which point only 32% of 4-DCB (0.01-100 uM) and 60% of 236-HCB (0.01-100 uM) was metabolized, while 245-HCB (0.1-200 uM) was not metabolized. Readdition of congener once metabolism had plateaued resulted in a reinitiation of metabolism with the same proportion of metabolites produced indicating that product inhibition was not the cause for the plateau. A partitioning of the PCB congeners within subcellular compartments and binding to cytosolic proteins influenced the extent of metabolism by decreasing the availability of congener for the drug metabolizing enzymes, cytochrome P-450. Spectral binding studies further revealed that the ability of a PCB congener to bind to the cytochrome P-450 system correlated with the extent of metabolism observed, with 236-HCB 4-DCB 245-HCB. The metabolic potential of the PCB congeners was influenced by both the affinity of the congener for cytochrome P-450 and the partitioning of congener within the hepatocyte, and not by product inhibition.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPolychlorinated biphenyls -- Metabolism.en_US
dc.subjectLiver cells -- Physiology.en_US
dc.subjectRats -- Physiology.en_US
dc.titleTHE DISPOSITION AND BIOTRANSFORMATION OF POLYCHLORINATED BIPHENYL CONGENERS IN ISOLATED RAT HEPATOCYTESen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc690111231en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberSmith, Thomasen_US
dc.contributor.committeememberSipes, Glennen_US
dc.contributor.committeememberClayton, Wesleyen_US
dc.contributor.committeememberLindell, Thomasen_US
dc.contributor.committeememberDuhamel, Raymonden_US
dc.identifier.proquest8323750en_US
thesis.degree.disciplinePharmacology & Toxicologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-08-13T17:58:43Z
html.description.abstractThe metabolism and distribution of three commonly occurring PCB congeners, 4,4'-dichlorobiphenyl (4-DCB), 2,2',3,3',6,6'-hexachlorobiphenyl (236-HCB) and 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB), each displaying different structural features, were investigated at their principal metabolic site, the hepatocyte. Hepatocytes, isolated from male Sprague-Dawley rats (200-250 g) by collagenase perfusion, were suspended in medium 199 and maintained at 37°C in a gyratory shaker. The radiolabeled ¹⁴C-PCB congeners were added to the hepatocyte suspensions as a DMSO-albumin mixture. Each congener was rapidly taken up by the cells with less than 10% of the congener remaining in the medium. The congeners accumulated within the hepatocytes without being fully metabolized. Metabolism followed first order Michaelis-Menten kinetics for 20 min and plateaued by 90 min at which point only 32% of 4-DCB (0.01-100 uM) and 60% of 236-HCB (0.01-100 uM) was metabolized, while 245-HCB (0.1-200 uM) was not metabolized. Readdition of congener once metabolism had plateaued resulted in a reinitiation of metabolism with the same proportion of metabolites produced indicating that product inhibition was not the cause for the plateau. A partitioning of the PCB congeners within subcellular compartments and binding to cytosolic proteins influenced the extent of metabolism by decreasing the availability of congener for the drug metabolizing enzymes, cytochrome P-450. Spectral binding studies further revealed that the ability of a PCB congener to bind to the cytochrome P-450 system correlated with the extent of metabolism observed, with 236-HCB 4-DCB 245-HCB. The metabolic potential of the PCB congeners was influenced by both the affinity of the congener for cytochrome P-450 and the partitioning of congener within the hepatocyte, and not by product inhibition.


Files in this item

Thumbnail
Name:
azu_td_8323750_sip1_m.pdf
Size:
3.994Mb
Format:
PDF
Description:
azu_td_8323750_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record