• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of methods for concentration and detection of enteroviruses in water.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9603345_sip1_m.pdf
    Size:
    3.129Mb
    Format:
    PDF
    Description:
    azu_td_9603345_sip1_m.pdf
    Download
    Author
    Ma, Ju-Fang.
    Issue Date
    1995
    Committee Chair
    Gerba, Charles P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Methods to improve the speed and reduce the cost of enterovirus detection in water were developed. A new positively-charged filter was evaluated for its ability to concentrate enteroviruses from tapwater. Both viable and inactivated viruses were detected by RT-PCR. It was demonstrated that the concentrate from filters could be reduced in volume to increase the sensitivity of RT-PCR detection of viruses. Finally, combination of RT-PCR and cell culture methodology was applied to the detection of enteroviruses in groundwater. Microporous filters are used for the concentration of enteric VIruses from large volumes of water. A new type of electropositively charged filter, MK zeta-plus, was evaluated and compared to the commonly used IMDS filter. Recovery of poliovirus type 1 from tapwater using MK filter and IMDS filters was 73.2 ± 26% and 90.2 ± 5.9%, respectively. Recovery of coxsackievirus B3 from tapwater using MK and IMDS filters was 32.8 ± 34.5% and 95.8 ± 12.0%, respectively. Inactivation of poliovirus type 1 by 1 N HCI, 1 N NaOH, 0.5 and 1.0 mg of free chlorine per liter, and UV light was compared using infectivity in cell culture and RTseminested PCR. A minimum contact time of 45 min with HCI, 3 min with NaOH, 3 and 6 with 1.0 and 0.5 mg of free chlorine per liter, respectively, was required to render poliovirus undetectable by RT-seminested PCR. Viruses inactivated by UV light could still be detected by RT-PCR. Application of reverse transcriptase (RT)-polymerase chain reaction (PCR) to detect enteroviruses in concentrated tap water samples was studied. The final volume of concentrates of 378 liters of tap water was successfully reduced from 25 ml to 5 ml without loss of virus. Direct phenol-chloroform-isoamyl alcohol (PCl) extraction was found to be sufficient to remove inhibitory substances for RT-seminested PCR with a sensitivity of 0.2 plaque-forming units/10 μl (0.2 PFU/liter of tap water). Groundwater samples were assayed by both cell culture and RT-PCR. Nine of 48 samples were enteroviruses positive by cell culture assay (19%). Cell culture harvests of groundwater samples were assayed by RT-PCR (for positive samples) or RT-seminested PCR (for negative samples) and the results were identical to those of cell culture assay. Fifteen out of 37 samples were positive by direct RT-PCR (40.5%), while only 8 of the 37 samples were positive by cell culture (21.6%). However, one method was not superior to the other in demonstrating the presence or absence of enteroviruses in groundwater based on statistical analysis (P>0.05). These data indicated that RT-PCR can be used as a confirmation procedure of cell culture assay, however, it can not yet be used independently of cell culture.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Microbiology and Immunology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.