• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Applications of artificial intelligence in conformational analysis.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9603359_sip1_m.pdf
    Size:
    4.211Mb
    Format:
    PDF
    Description:
    azu_td_9603359_sip1_m.pdf
    Download
    Author
    Walters, William Patrick.
    Issue Date
    1995
    Committee Chair
    Dolata, Daniel P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Conformational analysis provides a means of understanding a wide variety of chemical interactions. However, the complexity of the potential energy hypersurface for large molecules has restricted the use of conformational search in molecular modeling. The model building, or template joining, method employed by the WIZARD program is capable of overcoming many of the shortcomings of commonly used conformational search programs. While WIZARD has been shown to be widely applicable, the program still possesses a few limitations. This dissertation describes work done to overcome these limitations. When WIZARD is used to perform a conformational search on large, flexible molecules, the number of fragment combinations becomes very large and the conformational search can be extremely time consuming. Section I of this dissertation presents WIZARD III, a new version of the WIZARD program which is capable of applying a number of different search strategies to the conformational analysis problem. By employing search techniques such as genetic algorithms and simulated annealing, WIZARD III is capable of performing extremely rapid conformational analysis on large systems. Any program which performs molecular modeling based on an internal knowledge base will be only as good as the axioms it possesses. It would be desirable to create a program which is capable of integrating new knowledge with minimal interaction from the user. Section II of this thesis presents the MOUSE program, which utilizes inductive machine learning to derive new rules of conformational analysis. These new rules can be used to augment WIZARD's knowledge base and improve its ability to predict conformations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.