• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Knowledge discovery in databases with joint decision outcomes: A decision-tree induction approach.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9603374_sip1_c.pdf
    Size:
    5.301Mb
    Format:
    PDF
    Download
    Author
    Chang, Namsik.
    Issue Date
    1995
    Committee Chair
    Liu Sheng, Olivia R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Inductive symbolic learning algorithms have been used successfully over the years to build knowledge-based systems. One of these, a decision-tree induction algorithm, has formed the central component in several commercial packages because of its particular efficiency, simplicity, and popularity. However, the decision-tree induction algorithms developed thus far are limited to domains where each decision instance's outcome belongs to only a single decision outcome class. Their goal is merely to specify the properties necessary to distinguish instances pertaining to different decision outcome classes. These algorithms are not readily applicable to many challenging new types of applications in which decision instances have outcomes belonging to more than one decision outcome class (i.e., joint decision outcomes). Furthermore, when applied to domains with a single decision outcome, these algorithms become less efficient as the number of the pre-defined outcome classes increases. The objective of this dissertation is to modify previous decision-tree induction techniques in order to apply them to applications with joint decision outcomes. We propose a new decision-tree induction approach called the Multi-Decision-Tree Induction (MDTI) approach. Data was collected for a patient image retrieval application where more than one prior radiological examination would be retrieved based on characteristics of the current examination and patient status. We present empirical comparisons of the MDTI approach with the Backpropagation network algorithm and the traditional knowledge-engineer-driven knowledge acquisition approach, using the same set of cases. These comparisons are made in terms of recall rate, precision rate, average number of prior examinations suggested, and understandability of the acquired knowledge. The results show that the MDTI approach outperforms the Backpropagation network algorithms and is comparable to the traditional approach in all performance measures considered, while requiring much less learning time than either approach. To gain analytical and empirical insights into MDTI, we have compared this approach with the two best known symbolic learning algorithms (i.e., ID3 and AQ) using data domains with a single decision outcome. It has been found analytically that rules generated by the MDTI approach are more general and supported by more instances in the training set. Four empirical experiments have supported the findings.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Business Administration
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.