• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Large eddy probability density function (LEPDF) simulations for turbulent reactive channel flows and hybrid rocket combustion investigations.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9603720_sip1_m.pdf
    Size:
    6.784Mb
    Format:
    PDF
    Description:
    azu_td_9603720_sip1_m.pdf
    Download
    Author
    Yi, Jianwen.
    Issue Date
    1995
    Committee Chair
    Ramohalli, Kumar
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A new numerical simulation methodology, Large Eddy Probability Density Function (LEPDF), and corresponding numerical code have been developed for turbulent reactive flow systems. In LEPDF, large scale of turbulent motion is resolved accurately. Small scale of motion is taken care of by a modified Smagorinsky subgrid scale model. Chemical reaction terms are resolved exactly without modeling. A numerical scheme to generate inflow boundary conditions has been proposed for spatial simulations of turbulent flows. Monte-Carlo scheme is used to resolve filtered PDF (Probability Density Function) evolution equation. The present turbulent simulation code has been successfully applied in the simulations of transpired and non-transpired fully developed turbulent channel flows. It more accurately predicts turbulent channel flows than the existing temporal simulation code with only 27% of the grid size of the temporal simulation code. It has been shown that "Ejection" and "Sweep" are two dominant events in the wall region of turbulent channel flows. They are responsible for about 120% of the total turbulent production. Their interactions have negative contributions to the turbulent production, thereby keeping the total 100%. Counter-rotating vortex is a major mechanism responsible for turbulent production in boundary layer. It has also shown that injection from channel side walls increases the boundary layer thickness and turbulence intensities, but decreases the wall friction and heat transfer. Suction has opposite effects. A state-of-the-art hybrid rocket research laboratory has been established. Labscale hybrid rockets with fuel port diameters ranging from 0.5 to 4.0 inches have been designed and constructed. Rocket testing facilities for routine measurements and advanced combustion diagnosis techniques, such as infrared image technique and gas chromatography, are well developed. A computerized data acquisition/control system has been designed and built. A new Cu⁺⁺ based catalyst is identified which can improve the burning rate of general HTPB based hybrid rocket fuel by 15%. Scale-up principles are developed through a series of experimental testing on different sizes of hybrid rockets. A polymer (rocket fuel) degradation model with consideration of catalytic effects of small concentration of oxidizer near fuel surface is developed. The numerical predictions are in very good agreements with experimental data.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.