• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Applying modified CLEAN algorithm to MAP image super-resolution.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9604505_sip1_c.pdf
    Size:
    19.43Mb
    Format:
    PDF
    Download
    Author
    Yuen, Patrick Wingkee.
    Issue Date
    1995
    Committee Chair
    Hunt, Bobby
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this dissertation, the super-resolution method that we use for image restoration is the Poisson Maximum A-Posteriori (MAP) super-resolution algorithm of Hunt, computed with an iterative form. This algorithm is similar to the Maximum Likelihood of Holmes, which is derived from an Expectation/Maximization (EM) computation. Image restoration of point source data is our focus. This is because most astronomical data can be regarded as multiple point source data with a very dark background. The statistical limits imposed by photon noise on the resolution obtained by our algorithm are investigated. We improve the performance of the super-resolution algorithm by including the additional information of the spatial constraints. This is achieved by applying the well-known CLEAN algorithm, which is widely used in astronomy, to create regions of support for the potential point sources. Real and simulated data are included in this paper. The point spread function (psf) of a diffraction limited optical system is used for the simulated data. The real data is two dimensional optical image data from the Hubble Space Telescope.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical and Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.