• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Characterization of carbon nanoclusters produced by arc-discharge.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9620374_sip1_m.pdf
    Size:
    11.34Mb
    Format:
    PDF
    Description:
    azu_td_9620374_sip1_m.pdf
    Download
    Author
    Zhou, Dan.
    Issue Date
    1995
    Committee Chair
    Seraphin, Supapan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The research covered in this dissertation presents a systematic study for growth phenomena of carbon nanoclusters prepared by a arc discharge technique. Through a series of experiments, it has been found that morphology and yield of nanotubes strongly depend on the processing parameters. A low current density of 190 A/cm², a discharge voltage of 27 V, a high helium pressure of 550 torr, and a minimum electrode gap offered the best condition for synthesis of carbon nanotubes. According to a detailed study of carbon nanoclusters by TEM, the rich variety of growth phenomena, in particular non-concentric and complex branching phenomena are reported. These phenomena have demonstrated that the growth process of nanotubes is apparently more complex than what the existing growth models suggest. Further refinement and expansions of these models are important for technological exploitation of nanotubes and may be identified and guided by the present results. The reaction of foreign materials with carbon vapor in the arc results in their encapsulation into carbon cages, as well as the formation of other novel forms of carbon nanoclusters. Among more than eighteen elements introduced into the discharge in this study, B, Y, Zr, Nb, and Mo are most easily encapsulated in the form of their carbides into carbon nanoclusters. Through the detailed study, it has been found that the encapsulation occurs most easily in the materials with the incompletely-filled 4d electron shell for the refractory materials. Furthermore, it is reported that Fe, Co, Ni, or YC₂ working as catalysts stimulate the formation of single-walled nanotubes (SWTs), and mixtures of these catalysts greatly enhance the yield of SWTs. Based on morphologies of the star patterns of SWTs produced by an anode containing YC₂, their step-by-step growth mechanism is proposed. In addition to the SWTs, it has been found that Fe or Ni also stimulates the formation of strings of carbon nanobeads. A growth model for this phenomenon is presented. Finally, the conversion of carbon nanotubes into SiC whiskers is reported. In contrast to the conventional process, starting with nanotubes offers a high purity SiC whisker without any metal impurity.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Materials Science and Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.