• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    TESTING, MODELLING, AND APPLICATIONS OF INTERFACE BEHAVIOR IN DYNAMIC SOIL-STRUCTURE INTERACTION.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8401259_sip1_c.pdf
    Size:
    7.021Mb
    Format:
    PDF
    Download
    Author
    DRUMM, ERIC CORMAN.
    Issue Date
    1983
    Keywords
    Soil dynamics.
    Soil mechanics.
    Soils -- Testing.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The behavior of the interface between dry Ottawa sand and concrete has been studied using a new device developed for the cyclic testing of interfaces and joints. The stress conditions existing in the test device are investigated using stress cell measurements and a two-dimensional finite element analysis. A series of cyclic displacement-controlled interface tests are described in which the behavior of the interface is found to be a function of the applied normal stress, the amplitude of the applied displacement, the density of the sand, and the number of applied loading cycles. The (secant) shear stiffness is shown to increase with number of loading cycles, corresponding to an increase in sand density. The results of the laboratory tests are used to determine the parameters for use in a Ramberg-Osgood model to describe the interface shear stress-deformation response. This model is shown to describe the hysteresis behavior of the interface as a function of normal stress, density, and number of loading cycles. The model is used to predict the results of cyclic direct shear tests, and was found to yield satisfactory results. The interface model is implemented in a dynamic one-dimensional finite element procedure in which the soil and interface response are represented by nonlinear springs attached to the nodal points. The finite element procedure is verified by solving some simple problems for which exact or closed-form solutions are available. The response of a stress-controlled sand-concrete interface test is then predicted using the FE procedure with the nonlinear sand-concrete interface model. Although the one-dimensional idealization is a gross approximation to the three-dimensional test condition, reasonable results are obtained. A pile subjected to a harmonic axial load is then analyzed. The computed response is compared to an analytical solution and the observed response of a test pile reported by others. The effects of including interface behavior is demonstrated by solving the pile problem with and without the nonlinear interface effects. The results of this research have provided an improved understanding of the cyclic behavior of dry sand-concrete interfaces. The cyclic behavior has been represented with a simplified model for which the parameters are easily determined from laboratory tests.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.