• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Structure and turbulence in the complex Ginzburg-Landau equation with a nonlinearity of arbitrary order.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9620421_sip1_c.pdf
    Size:
    17.85Mb
    Format:
    PDF
    Download
    Author
    Stark, Donald Richard.
    Issue Date
    1995
    Committee Chair
    Levermore, C. David
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Numerical and analytical studies are undertaken for the "inviscid" limit of the complex Ginzburg-Landau (CGL) equation with the objective of studying the applicability of paradigms from finite dimensional dynamical systems and statistical mechanics to the case of an infinite dimensional dynamical system. The analytical results rely on exploiting the structure of this limit, which becomes the nonlinear Schrodinger (NLS) equation. In the NLS limit the CGL equation can exhibit strong spatio-temporal chaos. The initial growth of the bursts closely mimics the blowup solutions of the NLS equation. The study of this turbulent behavior focuses on the inertial range of the time-averaged wavenumber spectrum. Analytical estimates of the decay rate are constructed assuming both structure driven and homogeneous turbulence, and are compared with numerical simulations. The quintic case is observed to have a stronger decay rate than what is predicted by either theory. This reflects the dominance of dissipation in the dynamics. In the septic case, two distinct inertial ranges are observed. This combination suggests that the evolution of a single burst, on average, is predominantly due to the self-focusing mechanism of blowup NLS in the initial stage, and regularization effects of dissipation in the final stage. Because the initial stage is primarily influenced by the NLS structure, the rate of decay for this range is close to the decay predicted for the structure driven turbulence. In a numerical experiment it is observed that some NLS solutions survive the deformation due to a CGL perturbation. In some cases the question of persistence can be addressed analytically using an averaging technique similar to a Melnikov method for pde's.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.