• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The tidal disruption of stars by a massive black hole at the center of a galaxy.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9622987_sip1_m.pdf
    Size:
    3.813Mb
    Format:
    PDF
    Description:
    azu_td_9622987_sip1_m.pdf
    Download
    Author
    Fulbright, Michael Scott.
    Issue Date
    1995
    Committee Chair
    Benz, Willy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Studies of the luminosity evolution of optical Quasi-Stellar Objects (QSOs) suggest that a large number of normal-looking galaxies today have a central massive black hole. These galaxies once contained Active Galactic Nuclei (AGN), but a dwindling fuel supply forced the central engine to fade. If one of these galaxies happens to be close enough, it might be possible to detect the central black hole by the effects it has on the kinematics and surface density of stars in the galactic nucleus. But, for the majority of galaxies, it is not feasible to observe these effects due to their great distance. Not feasible, that is, until the black hole disrupts a passing star. The debris of the star will form an accretion disk around the black hole. The galactic nucleus will then become a reborn AGN. It is then possible to detect the black hole by the sudden appearance of a compact source of extreme UV and X-ray photons at the center of a galaxy. Broad, double-peaked emission lines may also appear, giving conclusive evidence that an accretion disk has formed around a massive black hole. A survey to detect flares from galactic nuclei resulting from tidally-disrupted stars could possibly answer whether or not most galaxies go through an AGN phase. In this work, we will use Smoothed Particle Hydrodynamics (SPH) simulations to remove much of the uncertainty that existed in previous work on the tidal disruption of stars. These works were forced to assume that stars which passed inside the Roche limit of a black hole were completely accreted by the black hole. We will replace this assumption with the results of our SPH simulations, and find that previous works overestimated the rate at which gas is stripped from stars by a factor of two. We will then review the observational consequences of a disruption event, and consider two cases in which such an event may have been witnessed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.