• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Integrated scenic modeling of environmentally induced color changes in a coniferous forest canopy.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9623313_sip1_c.pdf
    Size:
    27.14Mb
    Format:
    PDF
    Download
    Author
    Clay, Gary Robert.
    Issue Date
    1995
    Keywords
    Landscape assessment.
    Color in nature -- Psychological aspects.
    Color in nature -- Physiological effect.
    Nature (Aesthetics)
    Visual evoked response.
    Contingent valuation.
    Physical geography.
    Committee Chair
    Daniel, Terry C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The relationship between the changes in color values of scenic landscapes, and the corresponding shifts in viewers' preferences to those changed environments, was the focus of the presented research. Color modifications, either natural or based on some human intervention, provide visual clues that an environment has undergone some transformation. These color changes can occur at both the micro and macro scale, can having temporal dimensions, and can be a result of combinations of both physical landscape change, and shifts in an observer's perspective with respect to that landscape. The research reviewed two existing models and related them in an integrated program of scenic change analysis. The first, a bio-physical remote sensing model, identified the relationships between the existing bio-physical environmental conditions and measured color signatures of selected landscape features. The second, a psychophysical perception model, established relationships between the landscape's bio-physical attributes and measured perceptual responses to those environments. By merging aspects of each model, the research related the changing scenic color patterns with observers' responses to those changed environments. The research methodology presented a program of scenic change analysis incorporating several technologies including (1) ground-based biological inventories, (2) remote sensing, (3) geographic information systems (GIS), and (4) computer visualization. A series of investigations focused on landscape scenes selected from a high elevation coniferous forest in southern Utah. Three initial scenic investigations compared (1) the impact of changing view angles on scenic color values, (2) color shifts due to changing sun-illumination angles within a day, and (3) color shifts due to changing biological conditions over a 12-month period. A fourth investigation measured the color changes caused by a spruce bark beetle outbreak, and developed a series of color signatures to simulate the color shifts indicative of an outbreak at different stages of development. These signatures were applied to digitized site photographs to produce a series of visualizations displaying different levels of beetle damage. The visualizations were then applied in a series of perceptual experiments to test the precision and reliability of the visual simulations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Renewable Natural Resources
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.