• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL STUDIES ON WELL-DEFINED SILICON PHTHALOCYANINE STACKED-RING OLIGOMERS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8401270_sip1_w.pdf
    Size:
    6.032Mb
    Format:
    PDF
    Download
    Author
    MEZZA, THOMAS MICHAEL.
    Issue Date
    1983
    Keywords
    Phthalocyanines -- Analysis.
    Electrochemical analysis.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The results of solution electrochemical and photoelectrochemical studies on a series of well-defined silicon phthalocyanine (SiPc) stacked-ring oligomers are presented. These molecules consist of one (monomer), two (dimer), and three (trimer) SiPc rings which are axially stacked through a O-Si-O backbone with t-butyldimethylsilyl "end cap" groups. The interplanar spacing in the dimer and trimer SiPc is about 3.4 Å which facilitates the through-space molecular orbital overlap that gives them unique spectroscopic and electrochemical properties intermediate between those observed for other systems in which the electroactive centers are non-interacting or have exclusively through-bond interaction. There is a blue-shift in both the Q- and Soret absorbance maxima which is accompanied by an increased oscillator strength as more SiPc subunits are added per molecule. In dichloromethane solution, the cyclic voltammograms of these molecules exhibit multiple, one-electron, chemically reversible oxidations and reductions. The number of oxidations and reductions observed for each molecule increases with the addition of more SiPc rings and the energy difference between successive electron transfers decreases. In addition, there is a large cathodic shift of 0.52 V in the first oxidation potential between the monomer and trimer SiPc indicating a net stabilization of the dimer and trimer towards oxidation with respect to the monomer SiPc. These electrochemical results are shown to correlate well with Ultraviolet Photoelectron Spectroscopic (UPS) and UV-visible absorption spectroscopic data and energy level diagrams for the monomer, dimer, and trimer SiPc as well as higher-order polymeric SiPc are developed. Extensive photoelectrochemical studies on SiPc-modified electrodes are also reported. The effects of the chemical nature, E⁰, and concentration of the solution redox couple, as well as the influence of changing the electrode substrate and incident light intensity and wavelength on the photoresponse characteristics of these electrodes are presented and discussed. A solid-state band model for the dyesensitization process is discussed that treats the SiPc layer as a photoconductor that is capable of causing Fermi level pinning to occur at the SiPc/SnO₂ interface, resulting in an open-circuit photovoltage of about 200 mV which is independent of the solution E⁰. A molecular model is also developed that considers the specific molecular interactions which occur between the SiPc and the substrate, between adjacent SiPc molecules in the dye layer, and between the SiPc molecules and the solution redox species. Photoexcitation of the SiPc layer results in the formation of excitons in which the excited-state is delocalized over an aggregate containing several SiPc molecules.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.