• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    mRNA decay in Saccharomyces cerevisiae.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9626496_sip1_m.pdf
    Size:
    5.154Mb
    Format:
    PDF
    Description:
    azu_td_9626496_sip1_m.pdf
    Download
    Author
    Caponigro, Giordano Michael.
    Issue Date
    1996
    Committee Chair
    Parker, Roy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    mRNA decay is an important step in the control of gene expression. To study mRNA degradation I have exploited the genetic, biochemical, and molecular tools available in Saccharomyces cerevisiae. These studies provided insight into the signals within individual transcripts which specify their half-lives, the various mechanisms by which mRNAs are degraded, and the trans-acting factors which both perform and control nucleolytic events. I identified a 65 nucleotide segment from the coding region of the unstable MATɑl mRNA which was capable of targeting both the MATɑl and stable PGKI transcripts for rapid degradation. This "instability element" was divided into two parts, one located in the first 33, and the second in the latter 32, nucleotides. The first part could be functionally replaced by different mRNA sequences containing rare codons, and while unable to promote mRNA decay by itself, enhanced degradation mediated by the second part. I determined that the MATɑl Instability Element (MIE) targets mRNAs for rapid degradation by increasing the rates of two nucleolytic steps in a pathway of mRNA decay common to several stable and unstable yeast transcripts. The initial step in this pathway is shortening of the poly(A) tail of an mRNA. Subsequently, mRNAs are decapped, after which the transcript body is degraded in a 5' to 3' exonucleolytic manner. The MIE promotes decay of the MATɑl mRNA through an increase in its decapping rate. In contrast, PGKI mRNA decay was stimulated through an increase in its rate of deadenylation. The observation that the poly(A) tail must be removed prior to mRNA decapping suggests that the poly(A) tail inhibits decapping. I determined that the major poly(A)binding protein (Pablp) is required for the inhibition of decapping mediated by the poly(A) tail. Pablp is also required for normal deadenylation rates. Pablp therefore affects mRNA decapping and deadenylation, the two rate determining steps in a common pathway of mRNA decay. Determining how Pablp, and additional trans-acting factors, exert influence over both decapping and deadenylation will provide a greater understanding of the basis of differential rates of mRNA degradation.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Molecular and Cellular Biology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.