• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Optical contrast mechanisms and shear force interactions in near-field scanning optical microscopy.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9626517_sip1_m.pdf
    Size:
    5.484Mb
    Format:
    PDF
    Description:
    azu_td_9626517_sip1_m.pdf
    Download
    Author
    Froehlich, Fred Franklin.
    Issue Date
    1996
    Committee Chair
    Milster, Thomas D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation investigates mechanisms that influence image formation in near-field scanning optical microscopy (NSOM) performed with tapered fiber aperture probes. Both the generation of optical contrast for transmission mode NSOM and the force interaction between the probe and sample that is the basis for topographic imaging by shear force microscopy (SFM) are studied. A brief introduction and review of the field of NSOM are given. The lack of understanding in the previous work of the optical and force interactions between the probe and sample is cited as the motivation for the present investigation. A theoretical model is developed that describes the linear scattering of the probe's source field by the complex transmittance of the sample. The imaging of subwavelength features is shown to arise from the spatial mixing of the evanescent waves of the probe's source field with the high spatial frequencies of the object. Calculations of the optical transfer function are presented. The shear force servo that regulates the probe-to-sample separation and facilitates the acquisition of SFM imagery is extensively analyzed. The optical detection scheme that measures the dither vibration of the probe is characterized in order to optimize the servo performance. The shear force interaction is then analyzed by modeling the probe as a simple harmonic oscillator. Measurements of the probe's resonant response while interacting with the sample reveal that the shear force is mainly frictional. The magnitude of the force is derived, and limitations on its measurement are established through analysis of the minimum detectable displacement of the probe. The servo performance is shown to be shot noise limited, as opposed to being limited by the thermal vibration noise of the probe. Experimental SFM and NSOM images of various grating structures and optical data storage materials are presented. The optical contrast mechanisms displayed in the images are identified. Linear scattering generally dominates the contrast, but some images exhibit unique near-field effects due to probe-sample interactions that lead to nonlinear imaging behavior. The origin of these interactions is the boundary conditions imposed on the probe's aperture by the sample's composition and structure.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.