• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GEOLOGY AND GEOCHRONOLOGY OF THE SOUTH MOUNTAINS, CENTRAL ARIZONA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8217506_sip1_m.pdf
    Size:
    6.084Mb
    Format:
    PDF
    Description:
    azu_td_8217506_sip1_m.pdf
    Download
    Author
    Reynolds, Stephen James
    Issue Date
    1982
    Keywords
    Geology -- Arizona -- South Mountains.
    Geological time.
    Advisor
    Coney, Peter J.
    Committee Chair
    Coney, Peter J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The South Mountains are composed of two fundamentally different terranes. The western half of the range consists of Precambrian metamorphic and granitic rocks, whereas the eastern half is dominated by a composite middle Tertiary pluton. North-northwest-trending, middle Tertiary dikes have extensively intruded both terranes. A major episode of middle Proterozoic metamorphism and deformation produced a steep crystalloblastic foliation that generally strikes northeast. Middle Tertiary plutonism was accompanied by intense mylonitization that affected Precambrian and middle Tertiary rocks alike. Discrete phases of mylonitization were associated with each intrusive pulse between 28 and 25 m.y.B.P. Mylonitization generally produced a lowangle foliation and east-northeast-trending lineation. The attitude of mylonitic foliation defines a broad, east-northeast-trending anticline that controls the topographic axis of the range. Structurally low rocks in the core of the anticline are nonmylonitic, but intensity of mylonitic fabric increases progressively toward higher structural levels. Mylonitic Tertiary plutonic rocks are exposed as a gently dipping carapace overlying their less deformed equivalents. Mylonitic fabric cuts through the Precambrian terrane as a broad, west-dipping zone. Rocks above and below this mylonitic zone are lithologically identical and mostly retain their Precambrian structure. Fabrics in all rock types indicate that mylonitization resulted from extension parallel to east-northeast-trending lineation and flattening perpendicular to subhorizontal foliation. Mylonitization occurred under conditions of elevated temperature but relatively low confining pressure. Gold-bearing quartz veins occur in tension fractures that are late- to post-kinematic with respect to mylonitic deformation. Mylonitization was succeeded by more brittle deformation that produced chloritic breccia and microbreccia in the footwall of a major detachment fault that dips gently to the east. The detachment fault and underlying breccia were formed by normal faulting and brittle extension in an east-northeast direction. Rocks above and immediately below the detachment fault were antithetically rotated during faulting. Mylonitization, detachment faulting, and formation of the main east-northeast-trending anticline are all manifestations of eastnortheast-directed, middle Tertiary extension. Evidence for a possible continuum between mylonitization and detachment faulting has important implications regarding the evolution of Cordilleran metamorphic core complexes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.