• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE ROLE OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE STUDY OF FULLERENE FORMATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9620438_sip1_c.pdf
    Size:
    3.226Mb
    Format:
    PDF
    Download
    Author
    Zumwalt, Michael Crane
    Issue Date
    1995
    Advisor
    Huffman, Donald R.
    Committee Chair
    Huffman, Donald R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Two approaches intended to elucidate the fullerene-formation mechanism are presented. The first of these involves pyrolytic synthesis of fullerenes from hydrocarbon ring structures known as polycyclic aromatic hydrocarbons (PAH's). Following work by Taylor et al. (Nature 366, 728, 1993), C60 is be made by heating a naphthalene vapor/argon mixture to approximately 1000°C. The use of several precursor P AH' s, including naphthalene, is examined in this work. The second approach involves the intentional poisoning of carbon-arc fullerene production by the addition of hydrogen (H₂) to the quenching atmosphere. By adding hydrogen in varying amounts one produces both PAH's and chain molecules, possibly representing interrupted steps of the pathway leading to fullerenes. Various analytical techniques are employed to examine both approaches. It is shown by mass spectrometry' that pyrolytic synthesis is not indicative of the fullerene-formation mechanism of the carbon-arc technique pioneered by Krlitschmer et al. (Nature 347, 354, 1990). In addition to mass spectrometry, Fourier-transform infrared and ultra-violet/visible absorption spectroscopy, high-performance Iiquidchromatography, and Raman-scattering spectroscopy are brought to bear in the analysis of the hydrogen-poisoning approach. From the analysis the PAH molecules formed in the hydrogen poisoning of the carbon-arc do not appear to comprise a pathway to fullerene formation. However, there is evidence indicating that chains, produced as a result of hydrogen contamination of the carbon-arc technique, are related to the formation of fullerene molecules.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.