• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A TRIANGULAR ANISOTROPIC THIN SHELL ELEMENT BASED ON DISCRETE KIRCHHOFF THEORY.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8405505_sip1_w.pdf
    Size:
    4.739Mb
    Format:
    PDF
    Download
    Author
    MURTHY, SUBBAIAH SRIDHARA.
    Issue Date
    1983
    Keywords
    Shells (Engineering) -- Analysis.
    Structural analysis (Engineering)
    Advisor
    Gallagher, Richard H.
    Committee Chair
    Gallagher, Richard H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The research work presented here deals with problems associated with finite element analysis of laminated composite thin-shell structures. The specific objective was to develop a thin shell finite element to model the linear elastic behavior of these shells, which would be efficient and simple to use by the practicing engineer. A detailed discussion of the issues associated with the development of thin shell finite element has been presented. It has been pointed out that the problems encountered with formulation of these elements stem from the need for satisfaction of the interelement normal slope continuity and the rigid body displacement condition by the assumed displacement functions. These difficulties have been surmounted by recourse to the discrete Kirchhoff theory approach and an isoparametric representation of the shell middle surface. A detailed derivation of the strain energy density in a thin laminated composite shell, based on a linear shear deformation theory formulated in a general curvilinear coordinate system, has been presented. The strain-displacement relations are initially derived in terms of the displacement and rotation vectors of the shell middle surface, and are subsequently expressed in terms of the cartesian components of these vectors to enable an isoparametric representation of the shell geometry. A three-node curved triangular element with the tangent and normal displacement components and their first-order derivatives as the final nodal degrees of freedom has been developed. The element formulation, however, starts with the independent interpolation of cartesian components of the displacement and rotation vectors using complete cubic and quadratic polynomials, respectively. The rigid-body displacement condition is satisifed by isoparametric interpolation of the shell geometry within an element. A convergence to the thin shell solution is achieved by enforcement of the Kirchhoff hypothesis at a discrete number of points in the element. A detailed numerical evaluation through a number of standard problems has been carried out. Results of application of the "patch test solutions" to spherical shells demonstrate a satisfactory performance of the element under limiting states of deformation. It is concluded that the DKT approach in conjunction with isoparametric representation results in a simple and efficient thin shell element.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Civil Engineering and Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.