• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    AN EXPERT SYSTEM USING FUZZY SET REPRESENTATIONS FOR RULES AND VALUES TO MAKE MANAGEMENT DECISIONS IN A BUSINESS GAME.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8412661_sip1_w.pdf
    Size:
    5.100Mb
    Format:
    PDF
    Download
    Author
    DICKINSON, DEAN BERKELEY.
    Issue Date
    1984
    Keywords
    Decision making -- Data processing.
    Decision making -- Simulation methods.
    Computer simulation.
    Expert systems (Computer science)
    Management -- Data processing.
    Management -- Simulation methods.
    Management games -- Data processing.
    Management science -- Data processing.
    Advisor
    Ferrell, William R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation reports on an effort to design, construct, test, and adjust an expert system for making certain business decisions. A widely used approach to recurring judgmental decisions in business and other social organizations is the "rule-based decision system". This arrangement employs staff experts to propose decision choices and selections to a decisionmaker. Such decisions can be very important because of the large resources involved. Rules and values encountered in such systems are often vague and uncertain. Major questions explored by this experimental effort were: (1) could the output of such a decision system be mimicked easily by a mechanism incorporating the rules people say they use, and (2) could the imprecision endemic in such a system be represented by fuzzy set constructs. The task environment chosen for the effort was a computer-based game which required player teams to make a number of interrelated, recurring decisions in a realistic business situation. The primary purpose of this research is to determine the feasibility of using these methods in real decision systems. The expert system which resulted is a relatively complicated, feed-forward network of "simple" inferences, each with no more than one consequent and one or two antecedents. Rules elicited from an expert in the game or from published game instructions become the causal implications in these inferences. Fuzzy relations are used to represent imprecise rules and two distinctly different fuzzy set formats are employed to represent imprecise values. Once imprecision appears from the environment or rules the mechanism propagates it coherently through the inference network to the proposed decision values. The mechanism performs as well as the average human team, even though the strategy is relatively simple and the inferences crude linear approximations. Key aspects of this model, distinct from previous work, include: (1) the use of a mechanism to propose decisions in situations usually considered ill-structured; (2) the use of continuous rather than two-valued variables and functions; (3) the large scale employment of fuzzy set constructs to represent imprecision; and (4) use of feed forward network structure and simple inferences to propose human-like decisions.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Systems and Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.