Show simple item record

dc.contributor.advisorWyant, James C.en_US
dc.contributor.authorHAYES, JOHN BRADFORD.
dc.creatorHAYES, JOHN BRADFORD.en_US
dc.date.accessioned2011-10-31T18:47:18Z
dc.date.available2011-10-31T18:47:18Z
dc.date.issued1984en_US
dc.identifier.urihttp://hdl.handle.net/10150/187649
dc.description.abstractThe problem of using a computer to control the figuring of an optical surface is investigated. By assuming a linear, shift invariant figuring process, the amount of material removed during each figuring run can be computed. This is done by convolving a tool removal profile with a dwell function that describes the amount of time the figuring tool spends in each area element on the surface. Four methods of computing a dwell function that will best remove the figure errors are described. The advantages of making surface figure measurements using direct wavefront measurement techniques over the interferogram analysis methods used in previous computer controlled figuring machines are also discussed. The design and construction of a computer controlled optical figuring machine is then reviewed. The machine uses a computer controlled heterodyne interferometer to provide optical testing data on the surface being polished. Two microcomputers are used to analyze the test data and run the machine. Optical figuring is performed by scanning a polishing head with a known removal function over the surface at a rate derived from the surface errors. The operation of the software that computes the run path data and controls the machine hardware is outlined. The performance of each of the machine components is evaluated by comparing the behavior predicted by theory to the measured behavior. Initially, the accuracy of the interferometer is measured. The interferometer is then used to determine the performance of the polishing head by measuring the tool removal function. It is then shown that the machine can be run so that a predictable amount of material is removed from the surface. Finally, the feedback loop is closed and surface figure data from the interferometer is used to correctly polish the central region of a 16 inch diameter mirror. It is shown that the surface figure can be predicted with good accuracy over the entire surface. This work concludes with recommendations for improving the machine hardware and for improving the figuring performance near the edge of the surface being polished.
dc.language.isoenen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectOptical instruments -- Design and construction -- Automation.en_US
dc.subjectLenses -- Design and construction -- Automation.en_US
dc.titleLINEAR METHODS OF COMPUTER CONTROLLED OPTICAL FIGURING.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.identifier.oclc690920556en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest8412666en_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.description.admin-noteOriginal file replaced with corrected file July 2023.
refterms.dateFOA2018-09-03T13:56:19Z
html.description.abstractThe problem of using a computer to control the figuring of an optical surface is investigated. By assuming a linear, shift invariant figuring process, the amount of material removed during each figuring run can be computed. This is done by convolving a tool removal profile with a dwell function that describes the amount of time the figuring tool spends in each area element on the surface. Four methods of computing a dwell function that will best remove the figure errors are described. The advantages of making surface figure measurements using direct wavefront measurement techniques over the interferogram analysis methods used in previous computer controlled figuring machines are also discussed. The design and construction of a computer controlled optical figuring machine is then reviewed. The machine uses a computer controlled heterodyne interferometer to provide optical testing data on the surface being polished. Two microcomputers are used to analyze the test data and run the machine. Optical figuring is performed by scanning a polishing head with a known removal function over the surface at a rate derived from the surface errors. The operation of the software that computes the run path data and controls the machine hardware is outlined. The performance of each of the machine components is evaluated by comparing the behavior predicted by theory to the measured behavior. Initially, the accuracy of the interferometer is measured. The interferometer is then used to determine the performance of the polishing head by measuring the tool removal function. It is then shown that the machine can be run so that a predictable amount of material is removed from the surface. Finally, the feedback loop is closed and surface figure data from the interferometer is used to correctly polish the central region of a 16 inch diameter mirror. It is shown that the surface figure can be predicted with good accuracy over the entire surface. This work concludes with recommendations for improving the machine hardware and for improving the figuring performance near the edge of the surface being polished.


Files in this item

Thumbnail
Name:
azu_td_8412666_sip1_c.pdf
Size:
17.76Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record