• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE VIBRATIONAL AND ELECTRONIC ABSORPTION SPECTRA OF SILVER-LITHIUM, SILVER-SODIUM, COPPER-LITHIUM, AND COPPER-SODIUM FROM SINGLE MOLECULES TO SMALL PARTICLES.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8412673_sip1_w.pdf
    Size:
    2.571Mb
    Format:
    PDF
    Download
    Author
    PFLIBSEN, KENT PAUL.
    Issue Date
    1984
    Keywords
    Copper -- Spectra.
    Electronic excitation.
    Silver -- Spectra.
    Infrared spectroscopy.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Vibrational and electronic absorption spectra of metal alloy molecules and small particles have been measured. The matrix isolation technique was used to produce the samples. Dissimilar metals were combined to provide far infrared vibrational activity. Through the study of the electronic and vibrational excitation spectra, metallic interatomic binding potential characteristics could be investigated. The absorption spectra of the molecular systems were modelled using the extended Hueckel method, for the electronic excitations, and a dynamical matrix-normal mode technique for the vibrational excitations. Surface plasmon absorption, from the metal alloy particles, could not be measured but surface phonon absorption was measured. Electronic and vibrational absorption lines in alloyed metal molecules were measured and compared to the calculations. A surface diffusion model was developed to explain the dependences of molecule and particle size on the experimentally controlled system parameters.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.