• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DYNAMIC ANALYSIS OF POROUS MEDIUM PROBLEMS BY THE FINITE ELEMENT METHODS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8412684_sip1_c.pdf
    Size:
    13.28Mb
    Format:
    PDF
    Download
    Author
    WU, JAMES SHIH-SHYN.
    Issue Date
    1984
    Keywords
    Materials -- Dynamic testing.
    Finite element method.
    Porous materials -- Analysis.
    Advisor
    Simon, Bruce R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    General anisotropic constitutive laws and relevant dynamic equations of motion for porous media are described. The accuracy of various discretization algorithms in space and in time was surveyed. Results of these models and algorithms were compared to the exact solutions. Appropriate models and algorithms for further studies of spinal motion segments were then determined. Poroelastic axisymmetric finite element models, simulating spinal motion segments were analyzed and studied. Material properties of the intervertebral disc were derived by fitting experimental data based on porous medium theory using one-dimensional mathematical models. Structural models for the normal and degenerative processes were simulated for investigation of nutritional supply routes in the disc. Detailed structural anaalyses and failure conditions in various spinal motion segments were studied. Results of finite element analyses were consistent with the experimental observations. Nonlinear elastic material behavior of the solid skeleton was assumed and relevant formulas in creep were derived and examined. Preliminary results indicated that the nonlinear poroelastic material law used here may be useful in future analysis of the disc in finite element models of spinal motion segments.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Aerospace and Mechanical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.