• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    SOIL SPECTRAL EFFECTS ON VEGETATION DISCRIMINATION (REMOTE SENSING)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8421972_sip1_m.pdf
    Size:
    5.594Mb
    Format:
    PDF
    Description:
    azu_td_8421972_sip1_m.pdf
    Download
    Author
    HUETE, ALFREDO RAMON.
    Issue Date
    1984
    Keywords
    Plant-soil relationships.
    Soils -- Optical properties.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The spectral behavior of a cotton canopy with four different soil types inserted underneath, respectively, was examined at various levels of vegetation density. Measured composite spectra, representing mixtures of vegetation with different soil backgrounds were compared with existing measures of greenness, including the NIR-Red band ratios, the perpendicular vegetation index and the green vegetation index. Observed spectral patterns involving constant vegetation amounts with different soil backgrounds could not be explained nor predicted by either the ratio or the orthogonal greenness measures. All greenness measures were found to be strongly dependent on soil brightness. Furthermore, soil-induced greenness changes became greater with increasing amounts of vegetation up to 60% green cover. Three versions of factor analysis were subsequently utilized to determine if soil background influences could be filtered from canopy spectral data sets. In R-mode factor analysis, canopy spectra were decomposed into orthogonal features called brightness and greenness. The greenness feature, however, was found to be dependent, not only on vegetation density, but on soil background spectral properties. Of most concern were soil brightness influences which resulted in lowered greenness values with wet or dark soil backgrounds and identical vegetation conditions. The Q-mode version of factor analysis decomposed canopy spectra into additive, soil and vegetation, reflectance components. Although soil spectral response was found to contribute and mix into the derived greenness measure, significant improvements in vegetation discrimination occurred, especially at low vegetation densities. Finally, the T-mode version of factor analysis successfully separated the spectral influences of soil background from the larger response due to vegetation canopy development. Canopy spectra were decomposed into soil-dependent and soil-independent canopy components. The soil-dependent component was found to resemble the spectral response of green vegetation due to the scattering and transmittance properties of the overlying vegetation canopy. Results showed how the soil-dependent signal mixed into various measures of greenness and hampered vegetation discrimination. The filtering of soil background response from spectral data sets significantly improved greenness indices and vegetation analyses.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soils, Water and Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.